Efficiently inhibiting corrosion of facilities, instruments and working platforms which are made by various metals such as steel and copper in harsh aggressive environments including acid, base and salt aqueous solution is very significantly important strategy of national welfare and the people’s livelihood. Hence, the development of new type and highly efficient organic inhibitors is one of important research directions in chemical engineering and technology. This project proposes to use tunable and controllable properties of dendric and hyperbranched molecular chemical structures. Therefore, various series of target water soluble dendric and hyperbranched organic ionic liquid type molecules are designed and synthesized. Multi quaternary ammonium salts N-heterocyclic rings are constructed in dendric and hyperbranched molecular skeleton surfaces. These target molecules can undergo self-aggregation in corrosive aqueous solution, and well-defined structured micro-nano particles can be formed. These “supermolecule"-like self-aggregates contain thousands of N-heterocyclic rings. Hence, these molecular self-aggregates can interact with metal ions through highly efficient chemical chelation effects. Strong adsorption effects of these molecular self-aggregates on metal surface are produced. Hence, these target molecules can show greatly increased corrosion inhibition efficiency to metals in harsh corrosive aqueous solution. This project further proposes to employ time-dependent in-situ electrochemistry and in-situ surface analysis experiments. In addition, combing with material theoretic simulation, we try to reveal key physical and chemical mechanism of metal corrosion-inhibition corrosion, which will guide us to develop new organic inhibitors. This project will produce organic corrosion inhibitors which have application potentials. The proposed research work in this project has not reported elsewhere.
有效防治钢铁、铜等制备的金属设备、仪器、工作平台等在严酷环境下如酸、碱、盐水溶液中被腐蚀是关系到国计民生的重大战略,发展新型的高效有机缓蚀剂是化学工程与技术领域重要研究方向之一。本项目拟利用枝状和超支化分子的化学结构具有可调性和可控性,设计合成多系列具有水溶性的枝状和超支化有机离子液体型的目标分子,分子骨架表面架构多个季铵盐氮杂环。利用目标分子在腐蚀性水溶液中自聚集性,形成结构规整的微-纳米颗粒。这些类似“超分子”的自聚集体含有“成千上万”数目的氮杂环,能够与金属离子发生高效的化学配位作用,在金属表面产生强烈吸附效应,极大提升目标分子在严酷环境中对金属的缓蚀效率。并拟利用随时间演化的原位电化学与原位表面分析的实验,结合材料理论模拟,从原子/分子尺度上阐明金属腐蚀-缓蚀过程中关键的物理和化学机制,为发展新型有机缓蚀剂提供指导作用,获得具有应用潜能的有机缓蚀剂。本项目拟开展的研究未见文献报道。
在化学工业中,对钢铁、铜等制备的金属设备、仪器、工作平台等在严酷环境下如酸、碱、盐水溶液中有效防治被腐蚀关系到国计民生的重大战略。发展新型的高效有机缓蚀剂是化学工程与技术领域重要研究方向之一。本项目利用枝状和超支化分子的化学结构具有可调性和可控性,设计合成多系列具有水溶性的枝状和超支化有机离子液体型的目标分子,分子骨架表面架构多个季铵盐氮杂环。利用目标分子在腐蚀性水溶液中自聚集性,形成结构规整的微-纳米聚集材料。这些超分子的自聚集体含有大量数目的氮杂环,并与金属离子发生高效的化学络合作用,在金属表面产生强烈吸附效应,极大提升目标分子在严酷环境中对金属的抗蚀效应。本项目利用随时间演化的原位电化学与原位表面分析的实验,并结合材料理论模拟,从原子/分度上阐明金属腐蚀-缓蚀过程中关键的物理和化学机制,为发展新型有机缓蚀剂提供指导作用,且获得具有应用潜能的有机缓蚀剂,本项目发表多篇研究论文和申请发明专利,且项目主持人入选高被引用论文作者。
{{i.achievement_title}}
数据更新时间:2023-05-31
新型生物基环氧固化剂的制备与应用研究进展
Ordinal space projection learning via neighbor classes representation
基于纳米铝颗粒改性合成稳定的JP-10基纳米流体燃料
高强耐蚀钢筋的全寿命周期腐蚀行为特征及寿命预测
Image super-resolution based on sparse coding with multi-class dictionaries
铝离子对碳钢在中性水溶液中腐蚀的缓蚀性能研究
含多个氮杂环亲水性的有机缓蚀分子对金属的锚定吸附效应与缓蚀性能研究
基于缓蚀机理构筑的低腐蚀性离子液体润滑剂的设计、制备与摩擦学行为研究
多枝状高分子表面活性剂在界面上的自聚集作用