The extensive use of coal has been lead to a series of environmental problems, the resources utilization of coal have attracted considerabale attention worldwide. To address this issue, the production of hydrogen from coal gasification has been proven to be an effective method. However, the stability of palladium membrane was a big obstacle hindering their practical applications by using palladium membrane for hydrogen separation from coal gasification. Based on this background, this project aims to develop a new generation of high-purity hydrogen separation Pd-Au alloy membrane materials, and study the transfer mechanism of the membrane surface defects, the adhesion between the Pd membrane and the ceramic layer and basic theory of membrane separation. First, the employment of the optimization of the preparation method will be expected to solve the problem of surface defect transfer in ceramic membrane preparation process. The formation mechanism and tuning method of ceramic membrane microstructure will be also discussed. At the same time, the binding force between the ceramic layer and the Pd layer can be solved by inserting nanometer-sized palladium into the ceramic membranes in this project. The insert approach of nanometer-sized palladium into ceramic membrane surface and the nucleation, growth and preparation process of Pd membrane will be multi-scale studied in this project, the adhesion between the Pd membrane and the ceramic membrane will be also investigated. On this basis, dense Pd-Au alloy composite membranes on porous Ti–Al alloy supports can be prepared by electrolessplating followed by annealing. The implementation of project will be expected to reveal the relationship of preparation process parameters, micro-structure and separation performance of Pd composite membrane. By studying the hydrogen permeation mechanism of Pd-Au alloy membrane, the basic mechanism of the separation of Pd-Au alloy membrane will be illustrated, which will possibly provide a theoretical reference for the development of high-purity hydrogen membrane separation technology.
随着煤的大量使用导致了一系列环境问题,煤的资源化利用引起科学家的关注,一种有效的方法是将煤气化制取氢气,然而,将钯膜用于该过程存在膜的稳定性问题。为此,本项目拟通过膜微结构调控、膜层间热化学性能匹配以及膜的分离基础理论等关键科学问题研究,开发新型氢气分离Pd-Au合金膜材料。首先,通过制备方法的优化研究,解决陶瓷膜制备过程中大孔缺陷传递问题。探讨陶瓷膜微结构形成机理与调控方法。同时,将纳米钯镶嵌于陶瓷膜中,解决陶瓷层和Pd膜层之间的结合力问题。研究陶瓷层表面纳米钯的镶嵌方式及Pd膜层的成核及增长方式,考察膜层之间的界面结合方式、结合强度以及热化学性能的匹配。在此基础上,制备了Pd-Au合金膜,揭示制备工艺参数、膜微结构及渗透性能之间的构效关系,研究Pd-Au合金膜的透氢机理,初步形成Pd-Au合金膜的分离基础理论。项目的实施将为高纯氢气膜分离技术的发展提供理论参考。
煤的大量使用导致一系列环境问题,一种有效的煤资源化利用方法是将煤气化制取氢气,然而,将Pd复合膜用于该过程存在膜的稳定性问题。本项目选用Al2O3陶瓷粒子对Ti-Al合金表面的大孔缺陷进行预填充,解决了制备陶瓷膜过程中大孔缺陷的传递问题,探讨了陶瓷膜微结构形成机理与调控方法,制备了无缺陷陶瓷/Ti-Al合金复合膜。同时,将纳米钯镶嵌于陶瓷支撑体表面,替代了化学镀法制备Pd膜过程中的活化敏化播Pd晶种过程,增强了Pd膜层与陶瓷层之间的界面结合力,考察了膜层之间的界面结合方式、结合强度以及热化学性能的匹配,制备了高稳定性Pd复合膜。在此基础上,采用连续化学镀法制备了高性能Pd-Au合金复合膜,考察了合金化温度、时间和气氛环境对Pd-Au合金化的影响,揭示了制备工艺参数、膜微结构及渗透性能之间的构效关系,研究了Pd-Au合金膜的透氢机理,初步形成了Pd-Au合金膜的分离基础理论。项目的实施将为高纯氢气膜分离技术的发展提供理论参考。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
地震作用下岩羊村滑坡稳定性与失稳机制研究
混采地震数据高效高精度分离处理方法研究进展
2A66铝锂合金板材各向异性研究
固溶时效深冷复合处理对ZCuAl_(10)Fe_3Mn_2合金微观组织和热疲劳性能的影响
多孔钛铝合金担载钯复合膜的制备及膜表面缺陷形成机理研究
钛铝合金氢致轧制改性及成形性能研究
γ钛铝合金高温低周疲劳和断裂机理研究
新型担载钙钛石氧化物催化消除柴油碳烟及反应机理研究