As an important raw material in microelectronics, electrolytic copper foil is easily eroded and currently protected by chromate electroplating technique, which nowadays is a very poisonous treatment approach to manual workers and the environment as well. Surface silanization is currently a promising chromate replacer for metal passivation technique. However,electrolytic copper foil is subjected to high-temperature processing during end-user fabrication, which requires the structural designing and optimization of silane to prepare the film-forming material with high thermal stability. This proposed project plans to synthesize a series of siloxane modified and alicyclic functionalized polyimide materials by way of D-A addition, olefin carbonylation, imidization, hydrosilylation, etc., starting from the raw materials of organoslicon and forestry resources in jiangxi province. Through monomer and polymer backbone structure designing, the target polyimide materials would be utilized to protect the copper foil by empolying the technique of surface silanizing. The protection efficiency of the siloxane modified polyimides on copper foil would be evaluated by the electrical impedence spectroscopy (EIS) and potentiodynamic polarization method. By studying the correlation of the structure of the protecting film coating material and the protection efficiency, this project plans to optimize the stucture of the modified polyimides and the corresponding film forming method. Finally, the protection of copper foil by modified polyimide would be achieved. This project would shed light on developing a nonchromium passivation technique for cooper foil, and this investigation would provide theoretical significance of the researches in this respect. Theoretically, this project would be valuable for the study of the methodology of preparing a new kind of siloxane modified polyimides, and the exploration of value-adding transformation pathways of the raw materials of organosilicon and forestry resources.
电解铜箔是微电子行业中重要的原材料,目前仍采用镀铬技术进行表面钝化处理。表面硅烷化是目前很有希望取代金属表面镀铬钝化处理的技术,但是由于电解铜箔在后续加工中经过了高温处理,因而需要对硅烷结构进行优化设计,制备高耐热的成膜材料。本项目拟利用江西本省的有机硅和可再生林产化学资源,通过D-A加成、烯烃羰基化、酰亚胺化、硅氢加成等反应制备一类新型的高耐热的有机硅结构改性聚酰亚胺材料,运用表面硅烷化技术对电解铜箔表面进行保护,通过相应的组分及结构组成设计,结合交流阻抗谱及动电位极化等技术,研究改性聚酰亚胺膜涂层的性能-结构关系,从而优化材料结构和成膜方法,探索研究对电解铜箔表面的无铬钝化保护。本项目将为铜箔表面的无铬钝化技术提供一条有益的思路,奠定一定的理论基础。本项目对于新型有机硅改性聚酰亚胺材料的合成方法学研究,以及有机硅单体和林产化学初级原料的高值转化途径研究,具有重要的理论价值。
电解铜箔是微电子行业中重要的原材料,易发生腐蚀,目前采用镀铬技术进行表面钝化处理,生物毒性和环境危害很大。本项目针对迫切的环境问题开展了电解铜箔的绿色表面处理工艺研究,通过一系列的结构改性手段,将天然产物的脂环结构、酰亚胺环结构引入到有机硅氧烷分子中。继而通过表面硅烷化技术在电解铜箔表面化学镀上一层结构致密的酰亚胺环改性的有机硅氧烷薄膜,研究发现,在一定的浓度范围内,改性分子涂层展示了很好的防腐蚀效果,缓蚀效率可高达98.7%。通过电化学阻抗谱图以及动电位极化曲线谱学研究,对这不同浓度分子涂层预处理的铜箔防腐蚀性能进行了系统研究,探讨了不同结构硅烷处理液的最佳浓度,完善优化了配方及加工工艺。本项目的研究新型有机硅改性聚酰亚胺材料的合成方法学以及铜箔表面的无铬钝化技术提供一条有益的思路,奠定一定的理论基础。本项目发表论文13篇,其中SCI论文5篇,发表发明专利8篇(2篇已授权)。
{{i.achievement_title}}
数据更新时间:2023-05-31
演化经济地理学视角下的产业结构演替与分叉研究评述
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
正交异性钢桥面板纵肋-面板疲劳开裂的CFRP加固研究
特斯拉涡轮机运行性能研究综述
新型纤维素膜材料的合成及结构对膜性能的影响
新型碳纳米哑铃材料的可控合成及电化学性能研究
离子液体中取向性AlPO-n分子筛膜的原位电化学可控合成及其防腐性能研究
新型芳烃/脂肪烃渗透汽化分离膜材料合成及性能