小量子混沌系统的热化及温度性质研究

基本信息
批准号:11775210
项目类别:面上项目
资助金额:56.00
负责人:王文阁
学科分类:
依托单位:中国科学技术大学
批准年份:2017
结题年份:2021
起止时间:2018-01-01 - 2021-12-31
项目状态: 已结题
项目参与者:顾雁,王骄子,颜华,徐早,于洋
关键词:
热化典型态温度量子混沌量子动力学
结项摘要

Thermalization of quantum systems and properties of small systems, both are fields in physics, which have received wide attention in recent years. The contents of this proposal lie in the overlap of these two fields, as stated below: From the angle of micro-dynamics, we study thermalization processes of small quantum chaotic systems, make clear the role played by chaotic dynamics in these processes, reveal properties of internal temperature of such systems, and find method for temperature measurement. The fast development of the field of quantum thermalization benefited from the introduction of a new research angle and renewed understanding of some old angles, where the former is related to typical states and the latter involves long-time average of physical quantities and a generalization of a property of eigenfunctions of quantum chaotic systems (the so-called eigenstate thermalization hypothesis). This proposal plan to combine the three angles, in order to find a new ``angle’’ from which one can study thermalization of small quantum chaotic systems. Specifically, we plan to start from dynamics of small quantum chaotic systems, improve ETH to fit more realistic chaotic models, make use of properties of typical states, and determine steady states of subsystems by means of long-time average.

量子系统的热化与小系统的性质都是近年来受到广泛关注的领域。本申请属这两个领域的交叠,具体内容如下:从微观动力学角度,研究小量子混沌系统的热化过程,理清量子混沌动力学在该过程中所起的作用,确定这类系统的内在温度的性质、及其测量方法。量子热化领域在前些年的快速发展,得益于新研究角度的引入、以及对已有研究角度之内涵的重新认识,其中,前者与典型态的性质有关,而后者涉及对物理量长时间平均值的考虑、以及对量子混沌系统本征函数的一个性质的推广(所谓eigenstate thermalization hypothesis (ETH))。本申请拟有机地结合上述三个角度、形成一定的“合力”效应,以研究小量子混沌系统的热化。具体而言,我们拟以小量子混沌系统的动力学为基础,改进ETH以适用于更为现实的混沌模型,在初态的选取上充分利用典型态的特性,并利用长时间平均的手段来确定子系统的稳态。

项目摘要

我们从动力学角度研究了量子混沌系统的热化过程,尤其是与温度有关的性质。主要取得以下研究成果:(1)完善了半扰动论的理论框架;该理论为研究一般的复杂量子系统的本征函数的结构性性质提供了一个合适的框架;针对量子混沌系统之本征函数在经典能量允许区内、也即半扰动论的非微扰区内的系数,证明其在重新标度之后具有高斯分布。(2)研究了混沌环境下的小量子系统的稳态性质,给出了互作用下的优选基的数学表示式,以及约化密度矩阵具有吉布斯形式的一个充分条件;尤其是,解决了在整体薛定谔演化下的子系统的温度表示式问题,发现玻尔兹曼温度是适用的、而吉布斯温度不适用。(3)利用数值与解析分析研究了热力学第零定律对小量子系统的适用性;当互作用满足一定的条件时,证实不同温度物体在接触之后可以趋于具有共同温度的平衡态。

项目成果
{{index+1}}

{{i.achievement_title}}

{{i.achievement_title}}

DOI:{{i.doi}}
发表时间:{{i.publish_year}}

暂无此项成果

数据更新时间:2023-05-31

其他相关文献

1

路基土水分传感器室内标定方法与影响因素分析

路基土水分传感器室内标定方法与影响因素分析

DOI:10.14188/j.1671-8844.2019-03-007
发表时间:2019
2

敏感性水利工程社会稳定风险演化SD模型

敏感性水利工程社会稳定风险演化SD模型

DOI:10.16265/j.cnki.issn1003-3033.2021.04.003
发表时间:2021
3

夏季极端日温作用下无砟轨道板端上拱变形演化

夏季极端日温作用下无砟轨道板端上拱变形演化

DOI:10.11817/j.issn.1672-7207.2022.02.023
发表时间:2022
4

耗散粒子动力学中固壁模型对纳米颗粒 吸附模拟的影响

耗散粒子动力学中固壁模型对纳米颗粒 吸附模拟的影响

DOI:DOI: 10.3969/j.issn.1007-2861.2013.07.039
发表时间:2014
5

硫化矿微生物浸矿机理及动力学模型研究进展

硫化矿微生物浸矿机理及动力学模型研究进展

DOI:
发表时间:2020

王文阁的其他基金

批准号:10275011
批准年份:2002
资助金额:14.00
项目类别:面上项目
批准号:11275179
批准年份:2012
资助金额:80.00
项目类别:面上项目
批准号:10975123
批准年份:2009
资助金额:38.00
项目类别:面上项目
批准号:10775123
批准年份:2007
资助金额:30.00
项目类别:面上项目
批准号:39500061
批准年份:1995
资助金额:10.00
项目类别:青年科学基金项目

相似国自然基金

1

孤立量子系统的动力学弛豫及热化机制

批准号:11274024
批准年份:2012
负责人:吴飙
学科分类:A2014
资助金额:60.00
项目类别:面上项目
2

可由有限维系统诱导的无穷维系统的混沌性质及控制

批准号:11371380
批准年份:2013
负责人:黄煜
学科分类:A0303
资助金额:55.00
项目类别:面上项目
3

分形晶格上自旋系统量子纠缠动力学与量子热化

批准号:11905095
批准年份:2019
负责人:徐玉良
学科分类:A2503
资助金额:24.00
项目类别:青年科学基金项目
4

基于混沌密码系统的量子认证机制研究

批准号:61379153
批准年份:2013
负责人:郭迎
学科分类:F0205
资助金额:75.00
项目类别:面上项目