Bacterial meningitis is mainly caused by E. coli K1, Streptococcus suis serotype-2, Neisseria meningitidis,and Group B Strepotococcus. These bacteria are known to produce capsular polysaccharides containing sialic acid (Neu5Ac)and its O-acetylated form. Evidences have been shown that Neu5Ac and its O-acetylated form play an important role during meningitis infection, however, it remains unclear how these capsular Neu5Acs play their roles during infection. Previously, we found that NeuA from either E. coli or S. suis encodes a bi-functional enzyme, which possesses both CMP-Neu5Ac synthetase and O-acetylhydrolase activity. O-acetylhydrolase plays a key role in casule synthesis. Our recent preliminary data shows that capsular Neu5Ac is a key factor that enables E. coli to survive inside the rat brain microvascular epithelial cell. In this proposed study, we plan to analyze other two key enzymes responsible for capsule synthesis, NeuD and NeuS, together with NeuA to elucidate the regulation of capsular Neu5Ac synthesis and its O-acetylation. Furthermore,by using gene knock-out/mutagenesis/complementation, biochemistry, cell biology, and transcriptomics methods, the role of capsular Neu5Ac and its O-acetylated form in resistance to innate immunity and traversal of blood brain barrier will be investigated. The receptor molecule and signaling pathway involved in these processes will be identified. The final goal of this project is to reveal the function of capsular Neu5Ac in bacterial meningitis and provide a new strategy for anti-meningitis.
细菌性脑膜炎的主要致病菌有大肠杆菌K1、2型猪链球菌、脑膜炎奈瑟氏球菌、B群链球菌等,这些细菌的荚膜多糖中均含有唾液酸及其乙酰化修饰形式,有证据表明它们在脑膜炎感染中起重要作用,但作用机制还不清楚。我们对大肠杆菌和猪链球菌荚膜唾液酸合成的研究表明,其关键酶NeuA是具有CMP-唾液酸合成酶和O-乙酰水解酶的活性的双功能酶,其中O-乙酰水解酶活性在荚膜的合成中起关键作用;前期研究显示,荚膜唾液酸的存在可使细菌在脑微血管内皮细胞中存活。本项目拟通过研究荚膜唾液酸合成途径中的关键酶NeuD、NeuA和NeuS,阐明荚膜唾液酸合成及修饰的调控机制;在此基础上,进一步通过基因敲除/突变/互补、生物化学、细胞生物学及转录组学研究,分析唾液酸及O-乙酰唾液酸在细菌抗宿主天然免疫和穿过血脑屏障时所起的作用,并确定参与该过程的受体分子与信号传导途径,从而揭示唾液酸在细菌性脑膜炎感染中的作用及其作用机制。
大肠杆菌K1是引起新生儿脑膜炎的主要病原菌,其表面的荚膜多糖是α-2,8多聚唾液酸(PSA)并有乙酰化修饰形式,荚膜在脑膜炎感染中起重要作用,但作用机制还不清楚。我们的前期研究揭示了大肠杆菌K1荚膜唾液酸的合成途径。本项目研究了其中的关键酶NeuD、NeuA 和NeuS,发现乙酰转移酶NeuD是荚膜唾液酸合成途径的限速酶。敲除NeuD,细菌失去荚膜,过表达NeuD能产生更多的荚膜唾液酸,但是不能提高它的O-乙酰含量。进一步研究发现细菌主要通过另一个乙酰转移酶NeuO调控荚膜唾液酸的O-乙酰水平。在野生菌株中NeuO失活,只有8%的PSA被O-乙酰修饰。通过细菌传代培养获得NeuO有高度活性的菌株,38%的PSA被O-乙酰修饰。通过侵染分析、免疫荧光染色,共聚焦和透射电子显微镜研究了失去荚膜的突变株和荚膜及O-乙酰含量不同的菌株抗巨噬细胞吞噬的能力和穿过大鼠脑微血管内皮细胞(BMEC)的能力。结果表明,失去荚膜的突变株更多地被巨噬细胞黏附和吞入,有荚膜的菌株被巨噬细胞黏附和吞入的少,而且荚膜O-乙酰含量越高,粘附和进入巨噬细胞的细菌就越少。不同菌株都是由细胞骨架重排进入宿主细胞,含有细菌的小泡成熟为内吞体并与溶酶体融合,只有荚膜唾液酸高度O-乙酰化的菌株不与溶酶体融合,提示它是通过caveolae途径进入宿主细胞。细菌感染新生小鼠后,失去荚膜的突变株不致病,有荚膜的菌株都导致小鼠在5天内全部死亡,而且荚膜唾液酸O-乙酰水平越高,细菌的致死率越高。 因此,大肠杆菌K1荚膜唾液酸O-乙酰修饰通过阻止巨噬细胞黏附细菌提高了细菌的抗吞噬能力;保护细菌在宿主细胞内不被溶菌酶降解,在血液中大量繁殖进而穿过血脑屏障引起脑膜炎。本研究为脑膜炎的防治提供理论指导和新的药物靶点。
{{i.achievement_title}}
数据更新时间:2023-05-31
Efficient photocatalytic degradation of organic dyes and reaction mechanism with Ag2CO3/Bi2O2CO3 photocatalyst under visible light irradiation
Intensive photocatalytic activity enhancement of Bi5O7I via coupling with band structure and content adjustable BiOBrxI1-x
Study on the influence of introducing metal transition layer on deuterium Resistance of Al2O3 coating
Ultrafine CuO nanoparticles decorated activated tube-like carbon as advanced anode for lithium-ion batteries
Photocatalysis activation of peroxodisulfate over the supported Fe3O4 catalyst derived from MIL-88A(Fe) for efficient tetracycline hydrochloride degradation
CDC42乙酰化修饰在沙门菌感染宿主中的作用及机制研究
可溶性B7-H3分子在细菌性脑膜炎中的生物学作用及其机制
荚膜多糖在乳房链球菌感染乳腺过程中的作用研究
荚膜唾液酸对2型猪链球菌-宿主细胞相互作用的影响及其分子机制研究