The reaction mechanisms of alkenes (especially Macromolecule) and ozone reaction are currently a hot issue of atmospheric chemistry and aerosol research. However, the reaction mechanisms are still not clear. For example, the ketene formation mechanism of the reaction of methyl-substituted alkenes with ozone is entry point to research. This project will integrate quantum chemical calculation and matrix isolation Infrared to study the ketene formation mechanism of cyclic alkene (Limonene) and straight-chain alkene (cis-2-butene) with ozone. The possible reaction pathways for the ketene formation will be found by using quantum chemical calculation and obtained their reaction kinetics; the infrared spectra of Criegee intermediates and products will be detector using matrix isolation infrared spectroscopy; based on the above, Criegee intermediates and the corresponding products will be verified by combining quantum chemical calculation and matrix isolation infrared in the ketene formation reactions. The results and findings in this project will clarify the ketene formation mechanism in the reaction of methyl-substituted alkenes and ozone, and provide theoretical and technical support for the mechanism of ketene formation from ozonolysis of alkenes, which is scientifically important to further enriching the reaction mechanism of alkenes with ozone.
烯烃尤其是大分子烯烃与臭氧的反应体系的反应机理是目前大气化学和气溶胶研究领域的一个热点问题。但目前该反应体系的机理还存在许多薄弱环节,而甲基取代烯烃臭氧化形成乙烯酮的反应机理便是一个亟需研究的切入点。本课题拟通过量子化学理论计算与低温基质隔离红外相结合的方法,选取典型环状烯烃—柠烯、直链烯烃—顺式-2-丁烯为研究对象,阐明典型甲基取代烯烃臭氧化形成乙烯酮的反应机理。应用量子化学理论计算研究2种烯烃与臭氧反应形成乙烯酮可能的反应途径,获取其反应的动力学性质;利用低温机制隔离红外检测活性Criegee中间体及产物的红外图谱;在此基础上,结合量子化学理论计算与低温基质隔离红外,验证形成乙烯酮的Criegee中间体及相应产物。本项目的研究为烯烃臭氧化形成乙烯酮的机理提供理论和技术支持,进一步丰富了烯烃与臭氧反应体系的反应机理。
{{i.achievement_title}}
数据更新时间:2023-05-31
莱州湾近岸海域中典型抗生素与抗性细菌分布特征及其内在相关性
三级硅基填料的构筑及其对牙科复合树脂性能的影响
瞬态波位移场计算方法在相控阵声场模拟中的实验验证
长链烯酮的组合特征及其对盐度和母源种属指示意义的研究进展
计及焊层疲劳影响的风电变流器IGBT 模块热分析及改进热网络模型
溴二氟甲基取代β-二酮的反应研究
乙烯与甲醇甲基化反应制丙烯的实验和理论研究
聚乙烯初生态结构研究与聚烯烃材料的在线高性能化
手性伯胺催化的α-取代乙烯基醛/酮化合物的不对称转化反应研究