仿射概型上Euler类群理论研究

基本信息
批准号:11301539
项目类别:青年科学基金项目
资助金额:20.00
负责人:杨涌
学科分类:
依托单位:中国人民解放军国防科技大学
批准年份:2013
结题年份:2016
起止时间:2014-01-01 - 2016-12-31
项目状态: 已结题
项目参与者:冯良贵,许伟,姚博
关键词:
代数矢量丛K类群ChowEuler
结项摘要

The Euler Class Group Theory, which has its genesis in topology, was outlined by M. V. Nori around 1990 in Chicago University, aimed to develop an obstruction theory for algebraic vector bundles over affine varieties. Now, after a near 20 years' development, this theory not only give a fully settlement to the obstruction problem of algebraic vector bundles with top rank over affine varieties, but also became one of the most important theories in the related subjects of projective modules and algebraic vector bundles in recent history. In this task, our researching aim is to further develop Euler Class Group Theory. We hope that our works could connect this theory with K-theory and Chow ring of the variety, which are the most classical two homology theories about algebraic vector bundles. We plan to extend the Riemann-Roch theorem to the case of Generalized Euler Class Group. And beside this, we would also try to prove some basic results about Chow ring, such as Homology Sequences and Projective Formula, in the case of Euler Class Groups. In this task, we also plan to do some works about the extension of the Euler Class Group Theory of affine schemes to more general schemes. By this research, we want to extend the related results about algebraic vector bundles over affine scheme, such as algebraic obstruction theory and Riemann-Roch theorem, to the case of the algebraic vector bundles over more general schemes.

为了建立仿射代数簇上代数矢量丛的障碍理论,上世纪90年代芝加哥大学教授M. V. Nori提出了Euler 类群的理论构想。进过近二十年的发展,如今这一理论不但成功的解决了仿射代数簇上满秩矢量丛的障碍问题,而且业已成为代数矢量丛、投射模等相关领域中极为重要的理论之一。 本项目的研究旨在深入探索该理论同其他经典理论间的联系。我们的工作目标之一是构建Euler类群理论与另外两个有关矢量丛的经典同调理论:"K-理论和Chow环理论,"之间的联系。我们将研究推广有关Euler类群的Riemann-Roch定理到一般Euler类群上。同时,我们将探索在Euler类群的理论框架下证明有关Chow环的正合序列、投影公式等基本结果。本项目中,我们还将开展针对更一般概型上Euler类群理论的研究,希望建立针对一般概型上代数矢量丛的障碍理论以及Riemann-Roch定理等结果。

项目摘要

项目成果
{{index+1}}

{{i.achievement_title}}

{{i.achievement_title}}

DOI:{{i.doi}}
发表时间:{{i.publish_year}}

暂无此项成果

数据更新时间:2023-05-31

其他相关文献

1

Protective effect of Schisandra chinensis lignans on hypoxia-induced PC12 cells and signal transduction

Protective effect of Schisandra chinensis lignans on hypoxia-induced PC12 cells and signal transduction

DOI:10.1080/15287394.2018.1502561
发表时间:2018
2

Himawari-8/AHI红外光谱资料降水信号识别与反演初步应用研究

Himawari-8/AHI红外光谱资料降水信号识别与反演初步应用研究

DOI:
发表时间:2020
3

当归红芪超滤物对阿霉素致心力衰竭大鼠炎症因子及PI3K、Akt蛋白的影响

当归红芪超滤物对阿霉素致心力衰竭大鼠炎症因子及PI3K、Akt蛋白的影响

DOI:10.3969/j.issn.1008-0805.2022.07.18
发表时间:2022
4

Astragaloside IV exerts angiogenesis and cardioprotection after myocardial infarction via regulating PTEN/PI3K/Akt signaling pathway

Astragaloside IV exerts angiogenesis and cardioprotection after myocardial infarction via regulating PTEN/PI3K/Akt signaling pathway

DOI:
发表时间:2019
5

一种加权距离连续K中心选址问题求解方法

一种加权距离连续K中心选址问题求解方法

DOI:
发表时间:2020

杨涌的其他基金

相似国自然基金

1

仿射概型与VonNeumann正则环上的K理论

批准号:19301011
批准年份:1993
负责人:汪精周
学科分类:A0106
资助金额:1.80
项目类别:青年科学基金项目
2

仿射概型的代数理论

批准号:18870426
批准年份:1988
负责人:周伯熏
学科分类:A0104
资助金额:1.10
项目类别:面上项目
3

半群,半群代数与量子仿射代数

批准号:11771191
批准年份:2017
负责人:罗彦锋
学科分类:A0104
资助金额:50.00
项目类别:面上项目
4

可积系统、扩展仿射Weyl群及其应用

批准号:10971209
批准年份:2009
负责人:左达峰
学科分类:A0308
资助金额:23.00
项目类别:面上项目