The main objects we study in Complex dynamics is stability and chaos,.that is, the Fatou set and the Julia set, which are produced by iteration.of analytic mapping of a Riemann surface to itself under the sense of.Montel normality. The purpose of this item is to investigate several.important problems in Complex dynamics, and to reveal its scientifical.significance. The innovations of our investigation we should mention here.are th following two aspects:.One is to make “Hyperbolic metric” very useful tool in the study of.Complex dynamics; another is to establish the relationship between.dynamics of meromorphic functions and Nevanlinna theory..It is these new methods that we use to achieve important progress in.the study of several problems of Complex dynamics and to make new findings.
复动力系统主要是研究一个黎曼曲面到自身的解析映照迭代所形成的轨道在正规意义下的稳定性和混沌,即Fatou集和Julia集。本项目主要立项研究超越函数的动力系统中的若干重要的开问题,更进一步地揭示其科学意义。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于特征区域划分的文物碎片自动匹配算法
A Fast Algorithm for Computing Dominance Classes
基于非凸低秩稀疏约束的船舶交通流量预测
低次非均匀三角Bezier曲面的最小二乘渐进迭代逼近性
基于正序迭代选择策略的聚类中心自动选择方法
关于复解析动力系统中若干问题的研究
超越复解析动力系统的一些研究
关于超越整函数动力系统若干问题的研究
复解析动力系统及其相关问题