The main objects we study in Complex dynamics is stability and chaos,.that is, the Fatou set and the Julia set, which are produced by iteration.of analytic mapping of a Riemann surface to itself under the sense of.Montel normality. The purpose of this item is to investigate several.important problems in Complex dynamics, and to reveal its scientifical.significance. The innovations of our investigation we should mention here.are th following two aspects:.One is to make “Hyperbolic metric” very useful tool in the study of.Complex dynamics; another is to establish the relationship between.dynamics of meromorphic functions and Nevanlinna theory..It is these new methods that we use to achieve important progress in.the study of several problems of Complex dynamics and to make new findings.
复动力系统主要是研究一个黎曼曲面到自身的解析映照迭代所形成的轨道在正规意义下的稳定性和混沌,即Fatou集和Julia集。本项目主要立项研究超越函数的动力系统中的若干重要的开问题,更进一步地揭示其科学意义。
{{i.achievement_title}}
数据更新时间:2023-05-31
能谱联合迭代重建在重度肝硬化双低扫描中的应用价值
一种快速的数学形态学滤波方法及其在脉搏信号处理中的应用
线性权互补问题的新全牛顿步可行内点算法
分数阶常微分方程的改进精细积分法
Ordinal space projection learning via neighbor classes representation
关于复解析动力系统中若干问题的研究
超越复解析动力系统的一些研究
关于超越整函数动力系统若干问题的研究
复解析动力系统及其相关问题