Due to the abundant tantalum resource in China, the development of tantalum-based high-performance photocatalysts driven visible light can not only promote the photocatalytic hydrogen production towards the practical application, but also help to accelerate the conversion from resourceful tantalum to corresponding industrial advantages. In this project, a new tantalum-based porous nanomaterials developed by our group is chosen as the mother material because of its large surface area and open interior space. To expand the spectral absorption range, the Ag@AgX and Au@AgX(X=Cl, Br, I)with surface plasmon resonance will be assembled into the internal and surface of the tantalum-based porous nanomaterials. Therefore, wide spectrum response in visible light range for the novel tantalum-based porous nanomaterials will be achieved through the modulation of the type, size and shape of the metal nanoparticles, and the proportion of the crystal facets. Based on our previous work, the effects of surface plasmon resonance on the photocatalytic reaction for the tantalum-based porous nanomaterials will be investigated in detail to reveal the mechanisms of the interaction among the various components, as well as the carrier transfer for the nanocomposites. Furthermore, the intrinsic principle of the effect for the nano-metal surface plasmonic resonance on the photocatalytic properties of the tantalum-based porous nanomaterials will be comprehensively studied. In particular, we will focus on the couping of the surface plasmon resonance effect, the band structure of the tantalum-based porous nanomaterials and heterojunction barrier for various components,which will contribute to the structural design and rational synthesis of high-performance tantalum-based photocatalytic hydrogen production materials driven by visible light.
我国钽资源丰富,开发钽基高性能可见光光催化剂,不但可以促进光催化制氢走向实际应用,还有助于将我国的钽资源优势转化为产业优势。本项目选取课题组自行开发的新型钽基多孔纳米材料为母体,利用多孔纳米材料的大比表面积和开放的内部空间优势,在其内部和表面组装具有表面等离子体共振效应的Ag@AgX,Au@AgX(X=Cl,Br,I)等纳米复合材料,拓展钽基多孔材料的光谱吸收范围,通过调变金属纳米粒子的种类、尺寸、形貌和晶面比例,实现钽基多孔材料对可见光的宽谱响应。在前期工作基础上,深入研究表面等离子体共振效应对钽基多孔复合材料光催化反应的影响规律,探索复合材料各组分间相互作用机制和载流子传输机理,揭示纳米金属表面等离子体共振效应对钽基多孔材料光催化性能影响的本质,着重考查表面等离子体共振效应与钽基多孔复合材料能带结构以及异质结势垒间的耦合作用,为高性能钽基可见光催化制氢材料的结构设计和理性合成打下基础。
采用水解、阳极氧化、水热等多种方法制备了形貌可控的钽基多孔纳米材料,并在其内部和表面组装了Au、Ag、Pt、C3N4等纳米材料,拓展了钽基多孔材料的光谱吸收范围,实现了钽基多孔材料对可见光宽谱响应的既定目标,其可见光产氢性能最高可达624.99 μmol/g/h;借助EPR、HRTEM、HAADF-STEM、XPS等分析测试手段,深入研究了表面等离子体共振效应、组分间键合作用等对钽基多孔复合材料光化学反应的影响规律,探索了复合材料各组分间相互作用机制和载流子传输机理,发现纳米金属表面等离子体共振效应与钽基多孔复合材料间存在强的协同作用机制,部分复合材料中存在Z-Scheme机制,这些反应机制不局限于钽基多孔纳米材料,还有望应用于其他光催化体系,特别是有二维材料存在的催化反应体系。相关工作发表在Applied Catalysis B: Environmental等国际杂志上。本项目总计在国际学术刊物上发表SCI收录论文8篇,影响因子大于8.0的1篇。获得黑龙江省科学技术一等奖(自然科学类)1项,授权国家发明专利2项,出版学术专著1部。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
氟化铵对CoMoS /ZrO_2催化4-甲基酚加氢脱氧性能的影响
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
基于二维材料的自旋-轨道矩研究进展
丙二醛氧化修饰对白鲢肌原纤维蛋白结构性质的影响
双金属修饰钽酸盐表面等离子体纳米复合光催化剂的可控制备及其可见光分解水制氢性能研究
可见光响应氮掺杂钽基纳米半导体光催化剂的可控制备及光解水制氢性能研究
CdS基光催化材料的制备及可见光制氢活性研究
层状钽酸盐光催化材料的结构设计与可见光制氢性能