Some precision equipments and instruments mounted on vehicles, ships, submarines and airplanes are required to work in steady and quiet environment where the vibration is controlled strictly. In order to prevent from the influence of the multi-dimensional random excitations, which are characterized by large amplitudes and broad frequency bands, and to satisfy the strict requirements that the postures of equipments must be kept stability in low frequency and their vibration must be isolated efficiently, some novel approaches and techniques which are different from the classical ones must be proposed. This study tries to introduce the reconfigurable metamorphic mechanisms into vibration control and build an integrated mechatronics system to isolate the unwanted vibration of equipments. In the presented active vibration control system, the active joints are driven by hydraulic actuators and the resilient mounts are comprised of the combined mounts that are built up by rubber isolators and piezoelectric stacks in parallel. The switch disciplines of the configurations of the metamorphic mechanisms are investigated, and the mapping between the configurations and vibration characteristics are described. Taking the minimum power flow transmitted into the vibrating equipments as a cost function, the stable postures and vibration control are achieved using some self-adaptive control techniques like genetic neural network. The study is a multi-interdisciplinary work, and it is creative and challenging. The reconfigurable feature of the metamorphic mechanisms and self-adaptive capacity of the active control systems can make it possible to apply this study in some practical engineerings, such as vehicles, ships, spaceflight, offshore platforms, and so on.
汽车、船舰、潜艇和飞机等搭载的某些精密仪器设备需要在非常平稳、安静的振动隔离环境下工作。为免受来自外界高幅、宽频、多维随机扰动的影响,满足日益苛刻的低频姿态保持和高频振动隔离要求,必须采用更加有效的、区别于传统振动控制方式的新方法和新技术。本项目把可重构的变胞机构引入振动控制领域,以液压作动单元驱动主动关节,并辅以橡胶隔振器和压电叠堆作动器并联的弹性支承,构建全新的基于柔性变胞机构的机电一体化振动主动控制体系。研究变胞减振机构的构态变换规律,探讨构态形式和振动特性的映射关系等,以总功率流最小为目标函数,通过遗传神经网络等自适应控制方法实现机载设备的姿态保持和振动隔离。本研究是多门学科交叉的开创性工作,变胞机构构态的可重构性和主动控制系统的自适应性保证了该研究可在车辆、船舰、航空航天、海洋平台等领域得到应用,具有重要的科学学术价值和工程应用前景。
汽车、船舰、潜艇和飞机等搭载的某些精密仪器设备需要在非常平稳、安静的振动隔离环境下工作。为免受来自外界高幅、宽频、多维随机扰动的影响,满足日益苛刻的低频姿态保持和高频振动隔离要求,必须采用更加有效的、区别于传统振动控制方式的新方法和新技术。本项目在机构分析和综合的基础上,把可重构的变胞机构引入振动控制领域,研究并联机构的动力学特性和并联机构隔振系统的设计方法,构建全新的基于柔性变胞机构的机电一体化振动控制体系,进而研究其振动特性和提高其隔振性能。通过研究给出了一种通用的并联机构多种工作空间的绘制方法和免奇异的工作路径规划方法,设计了几种可减振的变胞并联机构和少自由度并联机构,获得了两种分别基于等效隔振器和弹簧刚度优化的并联减振机构设计方法。本研究是多门学科交叉的开创性工作,可在车辆、船舰、航空航天、海洋平台等领域得到应用,具有重要的科学学术价值和工程应用前景。
{{i.achievement_title}}
数据更新时间:2023-05-31
多能耦合三相不平衡主动配电网与输电网交互随机模糊潮流方法
基于被动变阻尼装置高层结构风振控制效果对比分析
基于多色集合理论的医院异常工作流处理建模
具有随机多跳时变时延的多航天器协同编队姿态一致性
组蛋白去乙酰化酶在变应性鼻炎鼻黏膜上皮中的表达研究
柔性变胞机构动力学及控制关键问题研究
时变索系支撑并联机构动力学与振动主动控制研究
复杂激励下变姿态超长柔性机械臂振动机理辨识及主动控制研究
旋转柔性梁振动的主动约束阻尼控制研究