本课题研究Bose-Einstein凝聚(BEC)等相关问题的涡旋集的几何性质及其动力学行为,这一问题与几何流方程有密切联系;研究几何发展方程特别是BEC以及超导中涡旋运动所满足的曲率流方程的大范围解存在性以及收敛性、解的奇性分析等问题。它们有强烈的物理背景。这些问题是当前微分几何以及偏微分方程领域非常活跃的课题,研究这些问题能更好地理解几何与物理的关系。
{{i.achievement_title}}
数据更新时间:2023-05-31
Influences of the Braking Effect of Ruler EMBr on Molten Steel Flow and Steel–Slag Interface Fluctuation in a Continuous Casting Mold
Global well-posedness of the 3D incompressible nematic liquid crystal flows with density-dependent viscosity coefficient
Groundwater sources, flow patterns, and hydrochemistry of the Central Yinchuan Plain, China
Mingmu Xiaoyao granules regulate the PI3K/Akt/mTOR signaling pathway to reduce anxiety and depression and reverse retinal abnormalities in rats
Thermocapillary flows in half-zone liquid bridges under axial magnetic fields
与Bose-Einstein凝聚方程相关的非线性椭圆系统的研究
环形陷阱中Bose-Einstein凝聚的涡旋研究
与Bose-Einstein凝聚态相关的分数阶方程组的解及其迭代算法研究
长记忆模型的统计推断问题以及相关的应用