This project aims at the key problems of design optimization and multi-scale modeling of metallic fibrous porous carriers, which are with complex micro-topographical features. It presents the novel approach of fine feature modeling that is process-controllable. It integrates multi-disciplines to investigate new approach of digitized modeling so as to achieve a fine description and effective control on the multi-scale topological features of the carriers' structure. By introducing different fractal theories, the study will utilize advanced experimental techniques and measures to explore the approach of digitized description, which will be able to effectively represent the fibrous porous topography and internal topological structure of carriers; By research into the composite modeling approach of two different fractal representations, a multi-scale fine feature model that is unified at both macro- and micro- scales can be constructed. By research and analysis on the related forming mechanism and process patterns, the mapping relationship between the topographical features of fine feature models and correlated sets of process parameters will be investigated, and hence the constraints of topographical features and controlling mechanism on process parameters can then be established. Combining with the extreme demand of design optimization on the multi-scale topography of metallic fibrous porous carriers, which are crucial to high performance mobile system for hydrogen production, this project will realize synergetic functional design of topography at both macro- and micro- scales. While tacking practical application requirements, it will also set the foundation of novel theories and technologies for digitized fine design of complex metallic fibrous porous structures correlated.
本项目针对具有丰富形貌特征的多茸金属纤维多孔载体的多尺度建模与设计优化难题,提出基于工艺可控性的精细特征建模的新方法,集多学科交叉,探索数字化建模新方法以更真实地描述且有效控制该载体结构的多尺度形貌特征。项目研究将结合先进的实验测试手段,通过引入多种分形建模理论,探索能够有效描述复杂多茸形貌与内部拓扑结构的数字化描述方法;通过研究两种不同分形描述的复合建模方法,构建宏微统一的多尺度精细特征模型;通过对相关成形机理与工艺规律的研究,研究该精细特征模型的形貌特征与其制造工艺参数集之间的映射关系,建立与成形机理相匹配的形貌特征约束与参数控制。项目将结合高性能移动制氢系统对多茸金属纤维多孔载体多尺度形貌设计优化的极端需求,研究面向微反应功能的宏微形貌协同设计方法,在解决具体应用领域设计难题的同时,为复杂金属纤维多孔结构的数字化精细设计提供新的理论与技术支持。
本项目针对具有丰富形貌特征的多茸金属纤维多孔载体的多尺度建模与设计优化难题,提出基于工艺可控性的精细特征建模的新方法,集多学科交叉,探索数字化建模新方法以更真实地描述且有效控制该载体结构的多尺度形貌特征。项目研究借助Micro-CT实验测试,综合分形统计与几何拓扑理论,建立了该复杂拓扑结构的数字化描述新方法;提出了分形几何与三周期极小化曲面集成建模方法,为复杂多孔结构的多尺度精细建模与主动设计提供了理论基础;通过对相关成形机理与工艺规律的研究,建立了该精细特征模型的形貌特征与制造工艺参数集之间的映射关系,建立了与成形机理相匹配的形貌特征约束与参数控制方法,成为该类型复杂功能结构可控制造的关键技术。项目结合多茸金属纤维多孔载体在微反应器、微通道散热器、微热管换热器等领域的应用,开发了面向功能的多孔纤维结构多尺度结构协同设计软件,为相关产品的主动设计与制造提供了重要的技术支持。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于分形L系统的水稻根系建模方法研究
硬件木马:关键问题研究进展及新动向
基于多模态信息特征融合的犯罪预测算法研究
氯盐环境下钢筋混凝土梁的黏结试验研究
居住环境多维剥夺的地理识别及类型划分——以郑州主城区为例
梯度多孔金属纤维载体的多尺度拓扑优化设计
金属纤维多孔功能结构的形态特征建模与主动设计方法研究
多茸状金属纤维载体成形机理及定向微通道均匀化控制
甲醇制氢微反应器金属纤维多孔载体结构主动设计与性能优化