Aiming at the design optimization of complex metal fibrous structures, this project proposes a novel design approach based on morphological modeling. Utilizing up-to-date testing and measurement methods, such as micro-CT, a novel morphological representation of metal fibrous structure is to be set up by taking advantages of advanced mathematics of statistics, fractal theory and complex network theory; targeting at initiative construction of morphological model, a novel modeling methodology based on the self-growing process model is proposed. Based on the representation proposed, the designable features and the parametric driven mechanism with these complex structure will be studied and revealed. the variant design and suitable design methodology of such complex structures are then proposed; With further research on forming mechanism and laws of fabrication processes, the mapping relationship between variations of morphological features and their process parameters will be developed, so that a fabrication model that is based on forming constraints can be constructed. Comparing with commonly-used simplified or reverse engineered models, it is can be expected that this project will make a novel breakthrough on approximate authenticity, and designability of metal fibrous structures. This will pave the way for active design of these complex structures with novel theoretical and technical support. The research and development work in this project will be based on the research efforts and achievements made by the group and the platform on typical industrial applications, such as miniature high performance heat exchanger, micro heat pipes and fuel cells. It will involve a multidisciplinary approach to realize design optimization of metal fibrous structures, so as to create novel structures to be applied in multiple industrial fields.
本项目针对具有复杂孔隙与拓扑形态的金属纤维多孔结构的设计优化难题,提出基于形态特征建模的主动设计新思路。项目将利用显微CT等先进的实验测试手段,综合数理统计、分形几何、复杂网络理论等数学方法,以建立金属纤维多孔结构的形态特征描述方法;以主动构建形态特征模型为目标,提出基于生长过程模型的建模新方法,并揭示该复杂结构存在的可设计特征与参数驱动机制,提出变形设计与开发型设计方法;通过成形机理与工艺规律的研究,揭示形态特征变化与制造工艺之间的映射关系,构建基于成形约束条件的制造模型。相对于目前普遍采用的简化型设计模型或三维反求重建模型,本项目有望在金属纤维多孔结构模型的逼近真实性与可设计性方面取得突破,为实现其主动设计提供创新性的理论与技术支持。项目研究将紧密结合学科平台在高性能微型换热器、微热管、燃料电池等领域的应用研究优势,集多学科交叉,实现金属纤维多孔结构的在多个应用领域的设计优化与结构创新
本项目针对以金属纤维多孔结构为代表的复杂多孔结构的设计优化难题,提出基于形态特征建模的主动设计新思路。在理论研究层面,提出了基于TPMS曲面描述的纤维多孔结构数字化建模方法;结合复杂多孔结构的工程设计需求,提出了复杂多孔结构的特征描述方法,实现了参数化驱动的特征设计;提出了复杂多孔结构的形态特征的概念及其描述方法,通过多约束求解实现了对形态特征的主动设计。在应用研究层面,基于全数字化模型实现了面向流场分布特征调控的金属纤维多孔结构主动设计与优化;提出了TPMS设计-SLM制备的制氢微反应催化剂载体设计制造技术方案,多项实验结果优于不锈钢纤维烧结板;构建了多孔结构/沟槽复合型吸液芯均热板的全数字化设计模型,实现了新型均热板的设计优化。相对于传统的设计方法,本项目提出的基于形态特征的主动设计方法在模型的精确有效性、可设计性方面取得了一定突破,上述理论方法为能够为复杂多孔结构的工程设计与应用提供了新的技术方法。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于分形L系统的水稻根系建模方法研究
硬件木马:关键问题研究进展及新动向
滚动直线导轨副静刚度试验装置设计
水氮耦合及种植密度对绿洲灌区玉米光合作用和干物质积累特征的调控效应
空气电晕放电发展过程的特征发射光谱分析与放电识别
多茸金属纤维多孔载体的可控精细特征建模与形貌协同设计
甲醇制氢微反应器金属纤维多孔载体结构主动设计与性能优化
梯度多孔金属纤维载体的多尺度拓扑优化设计
金属纤维多孔材料微结构形成与控制基础研究