Although the 3-dimensional (3D) printing technology enables the direct digital manufacturing of complex 3D porous structures, there lacks effective digital modeling methodology for these structures. As the requirements of function-driven design method for 3D interconnected porous structures in heat and mass transfer applications emerging, this project aims at studying the feature-based multiscale design approach for the macro- and meso- characteristics of these structures, based on the early researches on triply periodic minimal surface (TPMS). Firstly, the comprehensive feature-based design theory for the macro- and meso- characteristics of the 3D pore channel, the distribution of interconnected pores and the control of the heterogeneity in porous structures will be researched, and the supportive pore-making algorithms based on TPMS will be designed. Secondly, the micro fractal surface topography of pore channel, as well as the synthesis modeling of TPMS and the fractal topography, will be studied according to the 3D printing process, so that the multiscale micro channel model can be established as close as possible to the precise porous structures, and that fine models for multi-function coupling simulation can be prepared. Aiming at the engineering applications of reinforced heat and mass transfer, this project researches the innovative design and optimized method for periodic 3D interconnected porous structures based on multi-disciplinary study, and the success of the project may not only solve the difficulties in engineering applications, but also enrich the theory and technology system for complex porous structure innovative design.
3D打印技术使得复杂三维孔隙结构的直接数字化制造成为可能,对该类复杂结构的高效数字化设计方法是亟待解决的难题。本项目基于三周期极小化曲面(TPMS)的前期研究基础,结合强化传热传质领域对三维连通孔隙结构的功能设计与优化需求,研究其宏细观协同特征设计方法。拟重点研究三维孔隙通道特征、连通孔隙分布特征及其各向异性调控等宏细观协同特征设计理论,相关的TPMS孔隙造型支撑算法;结合3D打印工艺,研究孔隙通道表面微观形貌的分形特征,通过TPMS与分形形貌的集成建模,构建逼近真实的孔隙微通道多尺度模型,为功能耦合仿真提供精细模型支持。项目将紧密结合强化传热传质领域的工程应用,基于宏细观特征协同设计,探索针对复杂三维连通孔隙结构的创新设计与优化方法,在解决具体工程应用难题的同时,为复杂多孔结构的创新设计提供新的理论与技术支持。
3D打印技术使得复杂三维连通孔隙结构的直接数字化制造成为可能。针对该类复杂结构的数字化建模与设计优化难题,本项目基于计算几何领域的三维Voronoi空间剖分、三周期极小化曲面(TPMS)的理论基础,提出了三维微通道孔隙结构的宏细观协同特征建模与参数化设计方法。在理论研究层面,提出了基于三维Voronoi空间剖分的多孔结构建模方法、基于TPMS曲面描述的多孔结构建模方法;结合热质传输领域的功能设计需求,提出了复杂多孔结构的特征描述方法,实现了参数化驱动的多孔结构几何特征设计、多孔微通道的拓扑特征设计;提出了三维连通多孔结构宏细特征协同设计的概念,通过多约束求解实现了宏细特征协同设计算法。本项目提出的宏细协同设计方法在模型精确性、可设计性方面取得了一定突破,为能够为三维微通道孔隙结构的工程设计与应用开发提供新的设计与优化方法。在应用研究层面,结合制氢微反应器、热管及均热板的设计开发,基于全数字化模型实现了面向流场分布特征调控的微通道孔隙结构的主动设计,通过主动设计实现结构创新,深化与拓展了本项目所提出的理论方法。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于分形L系统的水稻根系建模方法研究
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
硬件木马:关键问题研究进展及新动向
基于二维材料的自旋-轨道矩研究进展
桂林岩溶石山青冈群落植物功能性状的种间和种内变异研究
考虑界面应力时周期材料宏细观电弹性能的解析方法研究
基于实际三维细观结构研究原位镁基复合材料宏细观损伤机理
基于地层结构效应的变刚度抗滑桩与地层协同工作宏细观研究
基于气体渗透率和微裂纹特征分析的混凝土宏细观损伤规律研究