Dye-sensitized solar cells (DSSC) are an attractive solar energy conversion technology and their advantages include low cost of manufacture, high power conversion efficiency and simplicity of fabrication. Porphyrins have superior performance for dye-sensitizer. In order to solve the key problems existing in the DSSC research field, based on our previous research on DSSC, We will design and synthesize novel porphyrin coordination polymer with 1-D/2-D structures , which will be locked onto TiO2 /FTO surface through anchoring porphyrin molecules , then addition of electrolyte to form dye-sensitized solar cells . The electron-rich conjugated moieties as the speotrum adjusting antennas will be combined directly on porphyrin systems, which will possess broadening and a red shift of the absorption bands. Owing to porphyrins possessing antenna function for light-harvesting , the main coordination polymers would be served as the highway for light energy transport and migration of photoinduced electrons, so as to inject effectively the photoelectrons into TiO2 semiconductor via anchoring porphyrin molecules. Using iodide/triiodide redox couple as reference electrolyte, seek for transitionmetal complexes electrolyte with pridine-azole ligands, which is more better inhibition of back electron transfer. So resulting in enhancement of power conversion efficiency. Systemically investigate the correlativity between the structures of porphyrin coordination polymer, anchoring molecules or complex redox shuttle and photoelectronic performance. Setup a method system for optimizing the solar-to-electric power-conversion efficiency of porphyrin coordination polymer, explore mechanism of photoelectron generation and transport, to develop novel high efficiency dye-sensitizer for solar cell.
染料敏化太阳能电池(DSSC)是一种成本低、效率高、制做简单的新型电池。卟啉是性能优异的染料敏化剂。本项目在前期DSSC研究基础上,针对DSSC研究领域中存在的关键问题,拟设计合成新型的一维/二维结构卟啉配位聚合物,该配聚物经卟啉锚定分子锁定到TiO2/FTO表面,加注电解质后组成敏化电池。将共轭基团作为光谱调节天线直接引入卟啉体系,加宽卟啉对太阳辐射的吸收范围。主配位聚合物可成为光能及电子迁移的传输导线,使光诱导电子经由卟啉锚定分子有效地正向注入TiO2。以电对I3-/I-的电解质溶液作参比,探寻能有效阻止光电子逆向转移的吡啶-氮唑类过渡金属配合物电解质。提高组装体系的光电转化效率。系统研究卟啉配位聚合物、锚定分子和配合物电解质的结构对光电性能的影响。建立优化卟啉配位聚合物体系光电转化效率的方法,揭示各界面间电子传递机理。开发新型的高效染料敏化剂体系。
卟啉是性能优异的染料敏化剂,本课题通过设计合成含有功能配位基团(吡啶、咪唑、四氮唑)及苯甲酸基团的锚钉锌卟啉,分别制备“锚钉锌卟啉/TiO2/FTO”敏化太阳能电池并研究光电效率,含吡啶基的苯甲酸基团的锚钉锌卟啉(ZnPA)最优被选用。设计合成“2+2”型含有丙酮化的酰腙基团的锌卟啉配体分子, 制备了Mn,Co, Ni, Cu, Zn, Cd 等一系列二价过渡金属离子的酰腙锌卟啉配位聚合物用于天线分子。分别通过锚定锌卟啉(ZnPA)轴向配位组装“酰腙锌卟啉配位聚合物-ZnPA/TiO2/FTO”敏化电池并研究光电性能及机理,发现含Mn酰腙锌卟啉配位聚合物给出最高的光电效率。配位聚合物有利于光能及光电子的传输,显著提高了组装电池的光电性能。酰腙锌卟啉锰的配位聚合物-锚定锌卟啉组装电池 > 酰腙锌卟啉单体-锚定锌卟啉组装电池 >锚定锌卟啉电池。进一步设计合成环外基团(meso-位)修饰的酰腙锌卟啉配体及不同酰腙基团的锌卟啉配体分子,通过组装“酰腙锌卟啉Mn配位聚合物-ZnPA/TiO2/FTO”敏化太阳能电池及其与共敏化鹅去氧胆酸(CDCA)的光电效率优化了功能基团,探寻了天线卟啉中功能基团的影响。通过测试光电转换效率,电化学阻抗,光谱变化,并DFT量子化学计算理论研究,分析了光电子转移的机理及影响因素。结果表明在酰腙锌卟啉锰的配位聚合物中,meso-位引入吸电子基(如-CN), 酰腙基团引入给电子基(如-CH3 )有利于提高组装电池的性能。引入共敏化剂可以进一步提升效率。初步探索了酰腙锌卟啉及钴卟啉用于空穴传输分子稳定钙钛矿太阳能电池。在本项目资助下,发表SCI学术论文40篇(本人为通讯作者,第一标注致谢本基金21461023),其中2区及以上论文15篇。以第一完成人申请授权发明专利7项。培养博士7名, 硕士12名。
{{i.achievement_title}}
数据更新时间:2023-05-31
祁连山天涝池流域不同植被群落枯落物持水能力及时间动态变化
气相色谱-质谱法分析柚木光辐射前后的抽提物成分
面向云工作流安全的任务调度方法
结核性胸膜炎分子及生化免疫学诊断研究进展
物联网中区块链技术的应用与挑战
低聚卟啉与锚定卟啉分子轴向配位组装敏化太阳能电池电极
染料敏化太阳能电池中卟啉染料的设计与分子工程
新型卟啉染料敏化太阳能电池的制备与系统优化
卟啉基近10nm超分子有序结构聚合物的构筑与自组装研究