Elevated temperature fretting damage (ETFD) is frequently observed in the aerospace and nuclear industries, which seriously affects the reliability and safety of the hot section components. Nowadays, the ETFD has become one of the most dangerous problem in these industries, and it has important practical significance and enormous economic benefits to develop the anti-ETFD technology. In this paper, we propose an innovative method based on the particulate lubrication technology and laser surface texturing (LST) process to improve the anti-ETFD properties of the hot section components in the aerospace and nuclear industries. In our research, we tend to build the physical and mechanical model of the third-body particle to simulate the inter-particle as well as the particle-wall interaction under fretting, and the first body's continuum model in which the surface wear process and the formation of debris particles will be included. A finite element - discrete element coupled method is proposed. The effects of textured surface design, physical and mechanical properties of particle lubricant on the friction and wear characteristics are studied systematically. The criteria of textured surface optimization and lubricant selection are clarified to improve the ETFD performance of the hot section components. The implementation of the research is helpful to deepen the understanding of the elevated temperature fretting tribological characteristics of the textured surfaces under particulate lubrication, and provide theoretical guidance for the study of anti-ETFD design and damage mechanism research, which has important theoretical and practical significance to improve the technical level of China's defense industry.
高温微动损伤是航空航天、核反应堆等国防工业普遍存在且日益凸现的失效形式,严重影响了热端部件的工作可靠性和服役寿命,探索和发展高温微动损伤防护技术具有重要的军事和经济意义。本项目拟基于颗粒流润滑技术和激光表面微织构加工技术,探索和发展一种高温微动损伤防护新方法。本项目拟建立“第三体”颗粒的细观物理力学模型和“第一体”连续介质模型,发展微织构化表面磨损表征方法和磨屑颗粒动态产生方法,建立三体接触的多尺度热机耦合算法和试验方法;系统研究微织构化表面设计、颗粒润滑介质物理力学属性等因素对摩擦副高温微动摩擦磨损特性的影响规律,明确微织构化表面优化设计和颗粒润滑介质选取的准则,从而提高热端部件的抗高温微动损伤性能。项目的实施有利于加深对该耦合方式的高温微动摩擦学特性的认识,为抗高温微动损伤设计及损伤机理研究提供理论指导,对提高我国国防工业技术水平具有重要的理论和实践意义。
高温微动损伤是航空航天、核反应堆等国防工业普遍存在且日益凸现的失效形式,严重影响了热端部件的工作可靠性和服役寿命,探索和发展高温微动损伤防护技术具有重要的军事和经济意义。本项目提出一种基于颗粒流润滑技术和激光微织构化表面加工技术的高温微动损伤防护新方法。本项目主要研究内容为建立了微织构化表面与颗粒流润滑相互作用的多尺度热机耦合模型,发展相关的计算方法和仿真程序;通过试验与仿真相结合的研究方法,验证了该方法在改善热端部件高温微动损伤性能方面的可行性。本项目研究成果有利于加深对该耦合方式的高温微动摩擦学特性的认识,为抗高温微动损伤设计及损伤机理研究提供理论指导,对提高我国国防工业技术水平具有重要的理论和实践意义。
{{i.achievement_title}}
数据更新时间:2023-05-31
正交异性钢桥面板纵肋-面板疲劳开裂的CFRP加固研究
坚果破壳取仁与包装生产线控制系统设计
栓接U肋钢箱梁考虑对接偏差的疲劳性能及改进方法研究
采用深度学习的铣刀磨损状态预测模型
固溶时效深冷复合处理对ZCuAl_(10)Fe_3Mn_2合金微观组织和热疲劳性能的影响
柔性表面微织构箔片轴承气体微流动机理及润滑特性研究
高副表面微织构的润滑机理和减摩设计方法研究
拉拔模具工作表面微纳仿生织构软涂层构建及协同润滑机理研究
微凹槽织构化粗糙表面热流体动力润滑确定性模型及减摩机理研究