Metal-phthalocyanines, a family of marcrocyclic aromatic organic compounds widely used in dyeing, bring colourful paints in our daily life to mind. Recently people have shown that metal-phthalocyanines could have huge potential for quantum computation, organic solar cells, organic light-emitting diodes, field effect transistor, photodynamic therapy of cancer, thanks to their long spin-lattice relaxation and dephasing times, excellent optoelectronic and magnetic properties, low-cost simple fabrication process and compatibility with flexible substrates. The success of these applications need state-of-the-art fabrication process of new crystal structures and the understanding of structure-properties relationship. It is a challenging task to fabricate metal phthalocyanine nano-materials with new crystal structures, as well as extraordinary optoelectronic and magnetic properties. On the other hand, this is a great opportunity to push forward the novel growth method for functional materials, for example, by regulating and controlling the self-assembly of phthalocyanine molecules in vapor phase deposition process. The proposed project aims to explore novel design of new organic vapor phase deposition apparatus, by introducing appropriate external magnetic and electric fields, to control the self-assembling of metal-phthalocyanines, thus tuning their physical properties. The self-assembling of metal phthalocyanines to form nanospheres, nanowires, nanorods, nanobelts and nanotubes could be driven by π–π interactions between molecules, accompanied by weak intermolecular interactions such as van der Waals forces, hydrogen bonds, coordination bonds, and electrostatic interactions, etc. The underlying growth mechanism will be studied by adjusting various parameters of organic vapor phase deposition. Our proposed vapor phase deposition methods to fabricate low-dimensional organic crystal material is simple, effective, and universal, which will be investigated to achieve controllable preparation of these micro / nano structures for large areas. The optical, electrical and magnetic properties, and the interactions between them in the organic micro / nano structures will be studied to reveal the crucial structure-property relationship experimentally. This will be compared with the predictions made by the cutting-edge theoretical tools, which will also provide new ideas for materials fabrication. This study will provide both theoretical, experimental, and material foundations for a wide range of applications of organic semiconductors of this type, including quantum computation, organic solar cells, organic light-emitting diodes, organic field effect transistors, and photodynamic therapy of cancers, etc.
金属酞菁具有优异的光电磁特性,制造成本低廉、生产工艺简单、可与柔性衬底兼容,在量子计算、有机太阳能电池、有机发光二极管、有机场效应晶体管、光动力治疗癌症等领域有重大的应用前景。调节和控制酞菁分子在气相沉积中自组装有望获得具有新晶体结构和优异光电磁特性的金属酞菁纳米材料。本课题探索通过引入外加的磁场、电场等设计新的气相沉积装置,研究金属酞菁利用共轭分子间的π–π相互作用,协同范德华力、配位键、静电相互作用等多重分子间弱相互作用的自组装形成纳米球,纳米线/棒,纳米带,及纳米管等的气相沉积自组装基本规律,探索制备新晶体结构材料简单、有效、普适性的气相沉积新方法, 实现其微/纳结构在大面积范围内的可控制备,研究它们的光学,电学或磁学性质,揭示其纳米结构-光电磁性质的关系,为该类有机半导体材料在量子计算、有机太阳能电池、有机发光二极管、有机场效应晶体管、光动力治疗癌症等领域的应用提供理论和实验基础。
金属酞菁是一类广泛应用于染料染色的芳香族有机化合物,它给人们的日常生活带来了丰富多彩的颜色。金属酞菁具有优异的光电磁特性,制造成本低廉、可与柔性衬底兼容,在有机发光二极管、有机太阳能电池、有机场效应晶体管、光动力治疗癌症、量子计算等领域有重大的应用前景。本课题研究了金属酞菁利用共轭分子间的π–π相互作用,协同范德华力、配位键、静电相互作用等多重分子间弱相互作用的自组装形成纳米球,纳米线/棒,纳米带,及纳米管等的气相沉积自组装基本规律,探索制备新晶体结构材料有效、普适性的气相沉积新方法, 研发有机光电子新材料纳米制备新技术,为高纯度有机光电子新材料的研发奠定坚实的理论和实验基础。我们获得有机气相沉积设备国家发明授权专利一项,获得工业上重要的有机半导体材料酞菁钴等五项新材料国家授权发明专利。获得有机半导体纳米材料的有机气相沉积装置国家发明授权专利一项(授权公告号CN 104073779 B, 授权公告日2017.01.04),该设备和方法适应于有机小分子材料,可制备出高品质高纯度纳米级有机光电子新材料。研究团队对这些新晶体结构纳米材料进行了命名,获得国家发明专利授权的有机光电子新材料有j-CoPc(CN 104086555 B), ω-NiPc(CN 104610269 B), 酞菁氧钛纳米片(CN 105543779 B),四苯基卟啉锌纳米材料(CN 105601637 B)等。这些高纯度纳米级有机光电子新材料具有不同于传统材料的新晶体结构和优异光电磁性能,并应用于气敏器件、光电探测器、有机太阳能电池、有机场效应晶体管,研究表明这些新材料可以减少发光淬灭,提高发光效率,延长器件寿命等等。本课题实现了金属酞菁材料微/纳结构的可控制备,研究了它们的光学,电学或磁学性质,揭示其纳米结构-光电磁性质的关系,为该类有机半导体材料在有机发光二极管、有机场效应晶体管、光动力治疗癌症、量子计算、有机太阳能电池、等领域的应用提供理论和实验基础。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
气相色谱-质谱法分析柚木光辐射前后的抽提物成分
温和条件下柱前标记-高效液相色谱-质谱法测定枸杞多糖中单糖组成
气载放射性碘采样测量方法研究进展
酞菁亚铁一维纳米线结构的可控制备及其磁学特性研究
冠醚取代酞菁的合成自组装及光电性质的研究
具有高双光子吸收截面的卟啉、酞菁类纳米材料的可控制备及性能研究
多孔酞菁MOFs材料的制备及其催化氧化环己烷研究