The traditional discrete Gabor expansion and transform with single-window suffer a limitation of the constrained time-frequency resolution governed by the Heisenberg uncertainty principle. To enhance the time-frequency resolution of the discrete Gabor expansion and transform, the multi-window real-valued discrete Gabor expansion and transform including their completeness are researched in this project. The biorthogonality condition between analysis windows and synthesis windows for the multi-window real-valued discrete Gabor expansion and transform will be derived and proved to be equivalent to the completeness condition. The fast algorithms for solving the windows will be presented based on the biorthogonality condition. Moreover, the fast series algorithms for the multi-window based real-valued discrete Gabor expansion and transform will be provided, and the fast parallel algorithms based on multirate filtering will be also presented. This project will make great contributions to the development of the theories and applications of the Gabor time-frequency analysis technology.
由于Heisenberg不确定原理的制约,传统单窗离散Gabor展开与变换的时频分辨精度受到很大限制。为了提高离散Gabor展开与变换的时频分辨精度,本申请项目将在已取得的单窗实值离散Gabor展开与变换理论基础上,研究多窗实值离散Gabor展开与变换及其完备性,推导出多窗实值离散Gabor展开与变换的窗函数双正交关系式,并证明此关系式等同于多窗实值离散Gabor展开与变换的完备性条件;研究利用此窗函数双正交关系式求解多窗函数的快速算法。考虑到实时应用,还将研究多窗实值离散Gabor展开与变换快速串行算法以及基于多抽样率滤波原理的快速并行实现算法。本项目研究丰富和完善了Gabor时频分析理论,具有重要的理论意义和应用价值。
由于Heisenberg不确定原理的制约,传统单窗离散Gabor展开与变换的时频分辨精度受到很大限制。为了提高离散Gabor展开与变换的时频分辨精度,本项目在已取得的单窗实值离散Gabor展开与变换理论基础上,研究了多窗实值离散Gabor展开与变换及其完备性,推导出多窗实值离散Gabor展开与变换的窗函数双正交关系式,并证明了此关系式等同于多窗实值离散Gabor展开与变换的完备性条件;研究了利用此窗函数双正交关系式求解多窗函数的快速算法。考虑到实时应用需要,还研究了多窗实值离散Gabor展开与变换快速串行算法以及基于多抽样率滤波原理的快速并行实现算法。本项目研究丰富和完善了Gabor时频分析理论,具有重要的理论意义和应用价值。
{{i.achievement_title}}
数据更新时间:2023-05-31
玉米叶向值的全基因组关联分析
监管的非对称性、盈余管理模式选择与证监会执法效率?
正交异性钢桥面板纵肋-面板疲劳开裂的CFRP加固研究
硬件木马:关键问题研究进展及新动向
基于 Kronecker 压缩感知的宽带 MIMO 雷达高分辨三维成像
实值离散Gabor时频变换理论、快速算法及应用研究
基于多抽样率滤波实现有限长周期离散Gabor展开与变换的理论及快速并行算法
离散付理叶变换及各种离散三角变换快速算法的研究
滑动窗离散正交变换快速算法及应用研究