The synergism of flywheel battery and accumulator which can meet many requirements of power battery performance for electric vehicle has broad application prospects. To solve the problems of low integration,high supporting loss and strong coupling in the motor and supporting system, this project present a four-degrees of freedom (4-DOF) permanent magnet type bearingless flywheel motor(PMTBFM) with the following characteristics: high integration of energy conversion system and 4-DOF radial supporting system, ultra-low-loss, and self-decoupling between torque and suspension force. The research of this project is focused on some problems related to the 4-DOF PMTBFM and its control technology. Firstly, the electromagnetic property is analyzed based on the finite element model. The torque efficiency and suspension performance are taken into consideration to realize multi-objective optimal under the constraint of highest integration. And then, the dynamic influence on the accuracy math model due to the vehicle working condition and road excitation is explored. The complete radial math model is built based on the operation principle and unmodeled dynamics. On the basis of above work, the dynamic-mechanism double decoupling control method for 4-DOF suspension system is studied. At last, low pulsation and wide discharge control strategies for torque system is built, and the speed parallel signal system and corresponding conreol software is contrasted with experimental prototype. The project is a basic research on the cross discipline of electrical engineering and automotive engineering, which provides theoretical and experimental basis for the development of high speed, high efficiency, reliable operation in flywheel battery and the exploration of different dynamic battery structure forms.
飞轮电池与蓄电池协同作用可以满足电动汽车对动力电池性能的诸多要求。针对车载飞轮电池中电机与支承系统集成度低、损耗大、强耦合的问题,提出一种四自由度永磁式磁悬浮飞轮电机,实现能量转换系统与四自由度径向支承高度集成的同时,具有超低损耗和转矩/悬浮自解耦等特点。项目着重围绕电机高集成设计及动态机-理双解耦控制开展研究:建立有限元模型并分析电磁特性,研究兼顾转矩效率与悬浮性能的多目标优化设计方法,得到集成度最高约束下的参数配置;探索汽车工况及道路激励对模型精确性的影响,融合机理与未建模动态,实现径向力完整建模,在此基础上着重研究四自由度悬浮系统动态-机理双解耦控制方法;建立转矩系统低脉动、宽放电运行控制策略;研制实验样机,构建高速并行数字系统及相应的控制软件。项目属于电气工程与汽车工程交叉学科的基础研究,为开发高速、高效、可靠车载飞轮电池和探索电动汽车不同动力电池结构形式提供理论和实验依据。
飞轮电池作为新能源车辆辅助动力,对提升车载动力系统综合性能有着重要的意义。项目面向车载飞轮电池对传动系统低损耗、弱耦合的一致性要求,提出了一种四自由度径向悬浮、永磁偏置抗扰以及浮转弱耦合的四自由度永磁磁悬浮飞轮电机。重点围绕提出的新型飞轮电机及其支承系统开展电磁-温度场分析、优化设计、精确建模和高性能控制开展研究。建立了较为完善的设计方法与准则,探明了多个自由度悬浮特性以及悬浮-转矩耦合特性,通过电磁分析验证了其在低损耗、弱耦合方面的优势。为提高车载运行下的悬浮精度和鲁棒性,建立了精确的数学模型,构建了直接转矩-直接悬浮力控制系统,设计了多类高性能滑模控制器以提升系统的抗扰动能力。构建了半实物仿真平台,开展了典型起浮和冲击扰动实验。此外,围绕径向磁轴承开展电磁-温升多目标优化设计,掌握了该类磁轴承超高速运行下损耗分布特征与多目标优化方法。设计了高集成轴向磁轴承,并开展了电磁特性分析、多模式悬浮力建模与实验研究。项目的开展为车载飞轮电池电机及其磁悬浮支承的设计提供了有益的理论基础和实验依据。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
小跨高比钢板- 混凝土组合连梁抗剪承载力计算方法研究
端壁抽吸控制下攻角对压气机叶栅叶尖 泄漏流动的影响
基于ESO的DGVSCMG双框架伺服系统不匹配 扰动抑制
二维MXene材料———Ti_3C_2T_x在钠离子电池中的研究进展
轴向分相永磁式磁悬浮开关磁阻飞轮电机及其陀螺效应抑制
飞轮储能用高集成度永磁偏置磁悬浮轴承及其零电流控制策略研究
高速四自由度永磁偏置无轴承开关磁阻电机及控制的研究
永磁转子偏转式三自由度运动电机工作机理及其控制研究