This project concentrates on new topology and zero current control strategy of permanent magnet biased magnetic bearing in flywheel energy storage system. The research work mainly include: 1. By means of magnetic circuit design and analysis, seek new topological structures of permanent magnet biased magnetic bearing which can control the displacement in five degrees of freedom and the circuits of radial magnetic field are fully decoupled for the purpose of the improving of integration level and system stability after the zero current control strategy is applied. The method and law of topological structure design are also explored. 2. Based on equivalent magnetic circuit method, the establishing method of high accuracy magnetic circuit model is explored. On this basis, the parameter optimization design method is explored according to specific constraint condition and optimization objective. The finite element simulation and experimental prototype test are used to verify the design results. 3. Complete dynamic simulation system is built which comprises of mechanism, electricity and magnetism. The method of accurate and rapid estimation of external load (or disturbance) is explored. The zero current control algorithms of two radial degrees of freedom are researched then. The validity and efficiency of these theories are verified by simulation, experiment and comparison with other permanent magnet biased magnetic bearing with coupled magnetic flux. The research results of this project will lay theoretical and technical basis for the design and application of new type permanent magnet biased magnetic bearing. It has important significance for the improvement of energy storage density and energy conversion efficiency of flywheel energy storage system.
本项目重点研究应用于飞轮储能系统的永磁偏置磁悬浮轴承的新型拓扑结构及其零电流控制策略。主要研究内容包括:1. 通过磁路设计与分析,以提高集成度和引入零电流控制后系统的稳定性为目的,探索能够实现五自由度主动控制且径向磁场的磁路无耦合的新型拓扑结构,总结拓扑结构的设计方法与规律。2. 基于等效磁路法,探析高精度磁路模型的建立方法,在此基础上,针对特定的约束条件和优化目标,探索本体参数的优化设计方法,并采用有限元仿真和实验样机测试对设计结果加以验证。3. 建立完整的机-电-磁动态仿真系统,探索外部负载(或扰动)的精确、快速辨识方法,研究径向两个自由度的零电流控制算法,通过仿真和实验以及与磁路耦合型永磁偏置磁悬浮轴承的比较,对理论的正确性和有效性加以验证。本项目研究成果能够为新型永磁偏置磁悬浮轴承的设计和应用提供理论和技术基础,对提高飞轮储能系统的储能密度和能量转换效率具有重要意义。
随着社会电气化程度的不断提高,人们对电能存储技术的要求越来越高,而利用飞轮来存储电能一直是电能存储技术研究的热点之一。与其他电能存储方式相比,飞轮储能具有使用寿命长、能量密度高、充放电循环次数高、安装维护方便、对环境基本没有污染等显著优点。基于以上优点,飞轮储能系统可用于提高电力系统的稳定性,改善电能质量;可作为电动车辆的动力电池,提高电动车辆性能,减少对环境的污染;可用于新能源发电领域,提高输出电能并网性能等等。因此,大力发展飞轮储能技术,在节能、发展新能源、智能电网、提高国家竞争力等各方面都具有重要意义。.本项目的研究内容包括:(1)永磁偏置五自由度磁悬浮轴承新型拓扑结构的研究。(2)新型拓扑结构磁路模型以及参数优化设计方法的研究。(3)永磁偏置磁悬浮轴承零电流控制策略的研究。.在项目研究年限内,对高集成度、低功耗永磁偏置磁悬浮轴承进行了深入系统的研究,解决了高集成度永磁偏置磁悬浮轴承的拓扑结构、参数优化设计以及零电流控制策略等关键问题,形成了具有原创性和自主知识产权的研究成果,拓宽了永磁偏置磁悬浮轴承的研究思路,为永磁偏置磁悬浮轴承在飞轮储能系统的广泛应用提供了技术储备。
{{i.achievement_title}}
数据更新时间:2023-05-31
端壁抽吸控制下攻角对压气机叶栅叶尖 泄漏流动的影响
基于ESO的DGVSCMG双框架伺服系统不匹配 扰动抑制
五轴联动机床几何误差一次装卡测量方法
基于二维材料的自旋-轨道矩研究进展
基于余量谐波平衡的两质点动力学系统振动频率与响应分析
飞轮储能用新型磁悬浮无轴承异步电机系统研究
新型偏置磁链电机设计机理及其零序电流控制策略的研究
含电涡流阻尼器与大承载永磁悬浮轴承的储能飞轮转子动力学研究
航天器飞轮储能用高速永磁电机转子动态温度场研究