变阶分数阶微分方程相关问题的定性研究

基本信息
批准号:11626097
项目类别:数学天元基金项目
资助金额:3.00
负责人:谢文哲
学科分类:
依托单位:湖南科技大学
批准年份:2016
结题年份:2017
起止时间:2017-01-01 - 2017-12-31
项目状态: 已结题
项目参与者:罗艳
关键词:
边值问题存在性分数阶微分方程
结项摘要

Variable-order fractional differential equations, as a novel mathematical modeling tool, has attracted much attention of experts and scholars both at home and abroad, and the study of its qualitative theory is a hot research area and difficulty at home and abroad in recent years. Due to fractional derivative of this kind of equations contains variable exponents, some classical results and analysis methods of constant-order fractional differential equations can not be generalized directly to study variable-order fractional differential equations. In this project, we intend to research the extremum principles of variable-order fractional differential equations and the existence, uniqueness, stability of solution, multiple solutions for initial and boundary value problem of several kinds of variable-order fractional differential equations. This subject has important theoretical significance and broad application prospects for the development and improvement of variable-order fractional calculus.

变阶分数阶微分方程作为一种新颖的数学建模工具,倍受国内外专家学者的关注,其定性理论的研究是近几年兴起的国内外研究热点及难点。由于此类方程中分数阶导数含有变指数的部分,有关常阶分数阶微分方程的经典结果和经典分析方法不能自然地推广到变阶微分方程的研究当中。本项目拟研究变阶分数阶微分方程极值原理以及几类变阶分数阶微分方程初、边值问题解的存在性、唯一性、多解性及稳定性等动力学问题,这对发展和完善变阶分数阶微积分理论具有重要的理论意义和广泛的应用前景。

项目摘要

项目成果
{{index+1}}

{{i.achievement_title}}

{{i.achievement_title}}

DOI:{{i.doi}}
发表时间:{{i.publish_year}}

暂无此项成果

数据更新时间:2023-05-31

其他相关文献

1

珠江口生物中多氯萘、六氯丁二烯和五氯苯酚的含量水平和分布特征

珠江口生物中多氯萘、六氯丁二烯和五氯苯酚的含量水平和分布特征

DOI:10.7524 /j.issn.0254-6108.2017122903
发表时间:2018
2

向日葵种质资源苗期抗旱性鉴定及抗旱指标筛选

向日葵种质资源苗期抗旱性鉴定及抗旱指标筛选

DOI:10.7606/j.issn.1000-7601.2021.04.29
发表时间:2021
3

复杂系统科学研究进展

复杂系统科学研究进展

DOI:10.12202/j.0476-0301.2022178
发表时间:2022
4

基于MCPF算法的列车组合定位应用研究

基于MCPF算法的列车组合定位应用研究

DOI:
发表时间:2016
5

长链基因间非编码RNA 00681竞争性结合miR-16促进黑素瘤细胞侵袭和迁移

长链基因间非编码RNA 00681竞争性结合miR-16促进黑素瘤细胞侵袭和迁移

DOI:
发表时间:2021

谢文哲的其他基金

相似国自然基金

1

分数阶微分方程边值问题解的定性理论研究

批准号:10971221
批准年份:2009
负责人:张淑琴
学科分类:A0301
资助金额:26.00
项目类别:面上项目
2

关于分数阶微分方程谱问题的研究

批准号:11601277
批准年份:2016
负责人:李静
学科分类:A0303
资助金额:18.00
项目类别:青年科学基金项目
3

分数阶非线性偏微分方程的相关数学问题

批准号:11471323
批准年份:2014
负责人:霍朝辉
学科分类:A0307
资助金额:65.00
项目类别:面上项目
4

分数阶数量曲率的相关问题研究

批准号:11801006
批准年份:2018
负责人:方益
学科分类:A0109
资助金额:24.00
项目类别:青年科学基金项目