The electro-magnetic planar direct-drive machine with near-zero transmission provides a new solution for feed dive system used in machine tools and nanomanipulation stages in such as semiconductor lithography and so forth with high speed, high accuracy,extreme size, which is a key technology to support next-generation extreme manufacturing equipments. This project focuses on the motion accuracy issue of switched-reluctance planar direct-drive machine by carrying out investigation of the dynamic characteristics and the motion accuracy evolving process of the machine. Mechanical-electrical-magnetic coupling dynamic model of the machine will be established. The mechanism of influences among current,position,and force in the machine is surveyed. An approach of decoupling between planar propelling forces and vertical force,and an identification and compensation method of the force ripple will be proposed. The principles of motion accuracy of the machine parameters affected by the machine structure,dynamic characteristics,control algorithm and its control variables will be explored. After building the corresponding test rig,experimetal model analysis, identification of dynamic parameters and experimetal study will be conducted.A method of dynamic optimization design for the structure of the switched-reluctance planar direct dirve machine and an adaptive robust controller are also studied. Finally,the theoretical model is obtained to describe the contributions to motion accuracy due to the various variables of the machine and thus the motion accuracy performance is able to be evaluated in advance and integration optimizition design of the machine will be achieved. This research will lay a theoretical foundation for designing innovative mechanical system by making use of the switched-reluctance planar direct-drive machine.
"近零传动"的电磁平面直驱理论为高速、高精、极端尺度的高档机床进给、IC操纵工件台等的发展提供了新思路,是下一代高性能制造装备技术发展的关键支撑。本项目以近零传动的开关磁阻平面电磁直驱系统的精度生成机理及其提高为核心,围绕其系统动力学特性成因、运动精度演变规律两个关键科学问题展开研究。建立系统的机电磁耦合动力学理论模型;掌握其电流-位置-力非线性作用机理、平面推力与法向磁吸力解耦及波动抑制方法;揭示结构、动力学特性、控制策略及其参数等因素对平面直驱精度的影响规律;通过搭建系统测试平台,完成实验模态分析、动力学参数辨识和实验研究;提出开关磁阻平面直驱系统的结构动态优化设计方法和精度调控策略与高精自适应鲁棒控制新算法。揭示近零传动开关磁阻平面直驱系统运动的微纳精度生成机理,实现大行程开关磁阻平面直驱系统的微纳精度精确预测与设计目标,为平面直驱运动平台的创新设计提供基础理论支撑。
开关磁阻平面直驱系统利用电磁能直接驱动实现平面近零传动,为高速、高精、极端尺度的高档机床进给、IC操纵工件台等的发展提供了新思路,在高精度、大行程要求的高端装备领域极具发展前景。本项目以开关磁阻平面直驱系统的精度生成机理及其提高为核心,深入研究了其运动精度演变规律、高精度控制两个关键科学问题。建立了开关磁阻平面直驱系统的机电磁耦合动力学理论模型;掌握了系统电流—位置—力三维非线性作用机理、平面推力与法向磁吸力的波动抑制方法;揭示了系统结构、动力学特性、控制策略及其参数等因素对平面直驱精度的影响规律;研制了一台开关磁阻平面直驱系统,搭建了系统测试平台,完成了实验模态分析、动力学参数辨识和实验研究;提出了开关磁阻平面直驱系统的结构动态优化设计方法和精度调控策略;设计并实现了系统高精度的自校正控制、模型参考自适应控制、鲁棒控制以及前馈摩擦补偿控制。研究的开关磁阻平面直驱系统在1μm行程定位时稳态位置误差为±0.2μm、在290mm行程定位时稳态位置误差为±1.5μm,系统实现了微纳米级精度运动。最终阐述了近零传动开关磁阻平面直驱系统运动的微纳精度生成机理,实现了大行程开关磁阻平面直驱系统的微纳精度精确预测与设计,为平面直驱运动平台的创新设计提供了基础理论。
{{i.achievement_title}}
数据更新时间:2023-05-31
坚果破壳取仁与包装生产线控制系统设计
端壁抽吸控制下攻角对压气机叶栅叶尖 泄漏流动的影响
基于ESO的DGVSCMG双框架伺服系统不匹配 扰动抑制
多源数据驱动CNN-GRU模型的公交客流量分类预测
采煤工作面"爆注"一体化防突理论与技术
直驱式开关磁阻平面电机参数优化及其控制研究
波能直驱式直线开关磁阻发电系统整体建模及控制策略的研究
直驱开关磁阻网络波能捕获最优协调机制研究
开关磁阻电机直驱式燃料电池车用离心压缩机系统的声振机理研究及控制