Pulmonary arterial hypertension (PAH) is a highly lethal disease. The dysregulation of gene expression is crucial for the initiation and development of pulmonary vascular pathological remodeling in PAH, but the mechanism remains unclear. DNA methylation, an important epigenetic mechanism for gene transcription, has been proved play a critical role in many cardiovascular diseases. However, up to date, the function of DNA methylation in PAH remains largely unknown. Most recently, we found that the expression of DNMT3B were significantly increased in the lung of PAH patients and rat model induced by hypoxia. In vitro, inhibition of DNMT3B activity or knock-down DNMT3B promoted the proliferation and migration of pulmonary artery smooth muscle cells after PDGF stimulation, suggesting that DNMT3B may have a protective role in pulmonary vascular remodeling. In vivo,DNMT3B knockout rats exhibited a worse phenotype after exposure to hypoxia. These piolet data strongly suggest that DNMT3B is involved in PAH and may play a protective role in pulmonary vascular remodeling. In this project, we will study the mechanism of DNA methylation and DNMT3B on pulmonary vascular remodeling in PAH in vivo and in vitro, and confirm genes and pathways regulated by DNMT3B in pulmonary vascular remodeling, and explore the impact of DNMT3B, as a modifier, on the clinical phenotype and prognosis of patients with PAH. Our study will provide new insight into the explanation of the molecular mechanisms of PAH and the new potential targets for drug intervention and genetic markers for clinical early warning and risk stratification of PAH.
肺动脉高压(Pulmonary arterial hypertension,PAH)预后恶劣。基因转录调控异常是PAH肺血管病理性重构的基础,但机制不清。DNA甲基化是调控基因表达的重要机制,但在PAH中作用所知甚少。我们前期发现,DNA甲基转移酶3B(DNMT3B)在PAH患者及大鼠模型的肺组织中表达上调;抑制DNMT3B活性可以增强PDGF刺激引起的肺动脉平滑肌细胞的增殖和迁移;DNMT3B基因敲除大鼠在缺氧刺激下表现出更加严重的肺血管重构表型。因此,DNMT3B很可能在PAH中发挥保护作用。本研究中,我们将全面研究DNNT3B在PAH中的功能,明确DNMT3B下游通路,探讨干预DNMT3B治疗PAH的可能性,确认DNMT3B及其通路基因的遗传多态位点对PAH临床表型和预后的影响。我们的研究将为解释PAH的分子机制提供新的思路,为治疗提供新的潜在靶点,为危险分层提供新的遗传标志物。
肺动脉高压(PAH)是一种由于肺血管重构和进行性狭窄导致肺动脉阻力持续增高的恶性心血管疾病,病理机制不清,现有药物疗效有限,患者预后恶劣。DNA甲基化是表观遗传学的标志之一,是建立和维持细胞及器官功能的基础,但DNA甲基化在PAH病理重构中的研究甚少。.针对肺动脉高压的临床重大需求,本课题组自2016年起在国家自然科学基金面上项目(81670052)资助下,从DNA甲基化入手,对DNA甲基转移酶DNMT3B在肺血管重构中的作用展开深入研究。经过4年研究,我们发现PAH病理情况下,肺组织DNA甲基化程度显著升高;DNMT3B是PAH大鼠模型肺组织及PAH患者肺组织中唯一表达上调的DNMT;体内动物水平、体外细胞水平多层次研究表明,DNMT3B缺乏会加重肺动脉高压,而高表达DNMT3B可明显降低肺动脉平滑肌细胞重构。更让人兴奋的是,我们用腺相关病毒转染大鼠肺组织高表达DNMT3B,可有效减轻野百合碱及缺氧诱导的肺高血压,提示DNMT3B有望成为治疗PAH的新靶点。上述研究成果于2020年12月正式发表于Science Advances(2020; 6: eaba2470. IF=13.116)。.除了明确DNMT3B表观调控机制在肺动脉高压中的作用,本课题组亦对肺动脉高压的遗传机制展开研究。我们发现了一个全新的肺动脉高压致病基因BMP9(Eur Respir J 2019; 53: 1801609),发现一个全新的肺动脉高压易感基因PTGIS(JAMA Cardiol. 2020;5(6):677-684. ),明确中国肺动脉高压患者BMPR2突变谱(Int J Cardiol. 2020; 318:138-143),明确二代测序是更好的肺动脉高压遗传检测手段(Pulm Circ. 2018; 8(2) 1–9)。.总体上,本项目发现了DNMT3B等多个新的肺动脉高压遗传和表观遗传调控因子,为深入理解肺动脉高压病理机制提供了新的认识。本项目总计发表SCI论著5篇,总影响因子43.636 分,10 分以上的 SCI 论文3 篇;发表中文核心期刊论著 2 篇;获得正式授权的国家发明专利 2 项;合作培养研究生3 名。 DNMT3B有可能成为新的肺动脉高压治疗靶点,具有较好的转化前景。
{{i.achievement_title}}
数据更新时间:2023-05-31
An improved extraction method reveals varied DNA content in different parts of the shells of Pacific oysters
DNA storage: research landscape and future prospects
骨髓间充质干细胞源外泌体调控心肌微血管内皮细胞增殖的机制研究
静脉血栓形成时间推断的法医学研究进展
The effectiveness and safety of traditional Chinese herbal medicine for the treatment of male infertility associated with sperm DNA fragmentation
DNA甲基转移酶3B异构体的研究
MicroRNA-130a在肺动脉高压血管重构中的作用及机制研究
Notch信号在肺动脉高压肺血管重构中的作用及机制研究
内皮间质转化在肺动脉高压血管重构中的作用及分子机制研究