研究拟齐性偏微分方程在若干典型分布空间中的整体可解性;研究解在奇点(包括无穷远点)的性质及其和整体性质之间的关系;对拟齐次向量场系统建立Hardy型不等式及Pohozaev型恒等式等重要公式,并用于研究一类线性和非线性次椭圆边值问题的可解性,解的唯一延拓性及振荡性。这些内容属于偏微分方程领域的重要前沿课题,处于分析、几何、代数在高层次上的结合点,其研究有助于丰富和深化偏微分方程的普适理论,有助于进一步沟通和开拓数学各分支间的联系,具有重要的科学意义。
{{i.achievement_title}}
数据更新时间:2023-05-31
带有滑动摩擦摆支座的500 kV变压器地震响应
基于腔内级联变频的0.63μm波段多波长激光器
TRPV1/SIRT1介导吴茱萸次碱抗Ang Ⅱ诱导的血管平滑肌细胞衰老
具有随机多跳时变时延的多航天器协同编队姿态一致性
吹填超软土固结特性试验分析
拟齐性偏微分算子的普适理论
拟微分算子和退化椭圆型方程边值问题
非光滑区域上的椭圆边值问题及齐次化问题
非齐次拟线性椭圆方程的泛函分析方法