AlGaN-based ultraviolet laser diode (UVLD) has recently been a hotspot of the research front over the world for a number of applications such as high-density data storage, chemical/biochemical analysis, medical sterilization and disinfection, photolithography, etc. In this project, we plan to focus on the most crucial problem of the research and development of UVLD, that is, the challenging epitaxy of the key AlGaN material. The research barriers of the epitaxial technique of high quality AlGaN material with high Al composition are expected to be broken through by combining the study on AlN and AlGaN material growth kinetics and the optimization of the epitaxy process. On this basis, we will further carry out the study of the p-type doping of the AlGaN material. AlGaN based high-efficiency quantum structures will be designed by the support and guide of the carrier transport and recombination mechanism in the quantum well (QW). The key processes of the UVLD device fabrication will be researched. On the bases of the in-depth understanding of the physical mechanisms and the process optimization, UVLD devices will be developed and expected to achieve the lasing wavelength below 350nm. This project could fill in the blank of the domestic UVLD device research area, and also could produce own intellectual-property so as to seize the future market advantage.
AlGaN基紫外激光二极管(UVLD)在光存储、生化科技、医疗杀菌、光刻等诸多领域具有广阔的应用前景,成为目前国际研究的前沿热点。本项目重点针对UVLD的核心AlGaN材料的外延生长难题开展研究,通过外延生长动力学的探索和外延工艺的优化,突破高质量高Al组分氮化物材料的MOCVD外延技术,进而开展AlGaN的p型掺杂研究,通过量子阱载流子输运和复合机制的研究指导高效量子结构设计,开展UVLD关键芯片工艺研究;通过深入理解相关的物理过程和机制,指导材料和工艺的优化提升,最终研制出UVLD器件,实现激射发光波长<350nm。通过本项目的开展可以弥补国内短波长UVLD器件研制领域的空白,获得自主知识产权,占领未来市场先机。
AlGaN基紫外激光二极管(UVLD)在光存储、生化科技、医疗杀菌、光刻等诸多领域具有广阔的应用前景,是目前国际研究的前沿热点。本项目重点针对UVLD的核心AlGaN材料的外延生长难题开展研究,开展了AlN模板材料的MOCVD外延生长研究,通过外延生长的创新探索和外延工艺的优化,突破高质量高Al组分氮化物材料的MOCVD外延技术,获得的高质量AlN外延材料X射线衍射(002)面和(102)面的FWHM最小值分别达到48 arcsec和20 arcsec。开展了面向紫外激光二极管(UVLD)的AlGaN多量子阱(MQW)结构的设计和外延研究,结合掺杂机制,成功将AlGaN MQW内量子效率提升到超过40%。开展了UVLD关键制备工艺研究,包括谐振腔腔面的制备、高反膜的制备技术等工艺,成功实现从UVA、UVB到UVC不同紫外波段的室温受激发射结果,最短波长达到259 nm。本项目的研究成果填补了国内短波长UVLD器件研制领域的空白,引领未来紫外光源的发展方向。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
气相色谱-质谱法分析柚木光辐射前后的抽提物成分
温和条件下柱前标记-高效液相色谱-质谱法测定枸杞多糖中单糖组成
疏勒河源高寒草甸土壤微生物生物量碳氮变化特征
气载放射性碘采样测量方法研究进展
AlGaN日盲紫外雪崩光电二极管的研究
AlGaN基紫外双色探测器
AlGaN基深紫外激光器的光场调控及高效电注入器件研究
AlGaN基深紫外雪崩光电二极管的应力-位错-极化协同调控物理机制研究