Energy scavenging technology has obvious technical advantages, which can achieve energy from electromagnetic field for powering sensors. It has broad prospects in the future for smart grid. For the key scientific problems about powering wireless sensors, this project will carry out some theoretical explorations and technological innovations. A new capacitive topology with spherical cap is proposed. Modeling of the scavenging topology and optimization of structural parameters are realized. Methods of topology and parameters about storage unit and conditioning circuit with high transmission efficiency and low power consumption are designed. Two types of magnetic energy converters, namely armillary and standalone, are proposed respectively, to achieve the comprehensive utilization of the electric and magnetic energy within the substations. The experimental prototype of power self-supply system is developed to carry out the tests about the output and efficiency characteristics under different conditions, and to provide the foundation for simulation modeling and optimization. Taking the changing electromagnetic field outside the system, the topological parameters of the converter and the elements' loss of the conditioning circuit into account, the multi-variable coupling equations are established to describe the performances of the system. The comprehensive optimization strategy and design methods are proposed, which are not only technical but also economic. Based on the experimental study, this project focuses on the key issues of the energy scavenging technology based on the electromagnetic energy, combined with the theoretical analysis and numerical simulation, which has important academic significance and applied value.
基于电磁能的传感器自供能技术,具有明显的技术优势,在智能电网中应用前景广阔。本项目针对无线传感器自供能技术的关键科学问题,开展理论探索与技术创新研究。提出新型的球形电容式集能转换器拓扑结构,实现集能拓扑的建模方法和结构参数的优化方法;研究高传输效率、低能耗的电能调理与存储单元拓扑及其参数设计方法;提出环绕式和分离式两种磁能转换器拓扑结构,实现变电站内电场能与磁场能的综合利用;研制自供能系统的实验样机,开展多种工况的输出特性与效率特性测试研究,为仿真建模与优化分析提供基础依据;引入外界电磁场变化、集能转换器拓扑参数、调理电路元件损耗等影响因素,建立表征自供能系统性能的多变量耦合关系方程,提出兼顾技术性与经济性的综合优化策略与设计方法。本项目以实验研究为基础,结合理论分析与数值仿真,系统研究基于电磁能的自供能技术关键问题,具有重要的学术意义和应用价值。
基于电磁能的传感器自供能技术,具有明显的技术优势,在智能电网中应用前景广阔。本项目针对无线传感器自供能技术的关键科学问题,开展理论探索与技术创新研究。提出新型的球形电容式集能转换器拓扑结构,实现集能拓扑的建模方法和结构参数的优化方法;研究高传输效率、低能耗的电能调理与存储单元拓扑及其参数设计方法;提出环绕式和分离式两种磁能转换器拓扑结构,实现变电站内电场能与磁场能的综合利用;研制自供能系统的实验样机,开展多种工况的输出特性与效率特性测试研究,为仿真建模与优化分析提供基础依据;引入外界电磁场变化、集能转换器拓扑参数、调理电路元件损耗等影响因素,建立表征自供能系统性能的多变量耦合关系方程,提出兼顾技术性与经济性的综合优化策略与设计方法。本项目以实验研究为基础,结合理论分析与数值仿真,系统研究基于电磁能的自供能技术关键问题,具有重要的学术意义和应用价值。
{{i.achievement_title}}
数据更新时间:2023-05-31
多能耦合三相不平衡主动配电网与输电网交互随机模糊潮流方法
针对弱边缘信息的左心室图像分割算法
一种基于多层设计空间缩减策略的近似高维优化方法
基于LS-SVM香梨可溶性糖的近红外光谱快速检测
基于限流级差配合的城市配电网高选择性继电保护方案
无线集能网络中的能量管理与时延优化
基于水平集的多材料结构拓扑优化设计方法与应用
SDN使能的无线Mesh网络拓扑重构与智能管控机制研究
微电网的多端口混合储能拓扑优化与多目标控制策略研究