The lysosome/vacuole sits at the crossroad of multiple intracellular trafficking routes including endocytosis and autophagy. Fusion with incoming vesicles results in increases of lysosomal/vacuolar membrane biomass. At present, little is known regarding how cells reduce the membrane constituents of this organelle to counterbalance material influx. ..In our preliminary study, we identified the “early-stationary phase vacuole turnover/EVT” phenomenon: as yeast cells enter stationary phase upon gradual nutrient depletion, integral membrane proteins with diverse functions are translocated from the surface of vacuoles into the lumen of this organelle and degraded. This process relies on at least three groups of proteins: the ESCRT complexes, vesicle fusion factors under the control of Rab proteins, and Atg8. ..Taking recent publications in related areas into consideration, we advocate an interpretation of EVT mechanism based on endosome-vacuole interactions: The ESCRT machinery participates in the Rab conversion process on endosomes to promote the activation of Ypt7 (Rab7 homologue); Ypt7 in turn regulates the dynamic behavior of vacuoles, leading to the turnover of EVT substrate; during this process, Atg8 engages in the regulation of EVT by protein-protein interaction(s). The aims of this project are to perform extensive tests on this and other potential hypotheses to clarify the mechanism underlying EVT substrate turnover, and to identify the target of Atg8 regulation. ..Our study will provide a distinctive perspective on how environmental changes regulate dynamics of vacuoles and the integral contribution of endosome-vacuole interactions therein.
溶酶体/液泡是内吞、自噬等多条运输途径的汇聚点。相关囊泡与溶酶体/液泡的融合造成其膜组分增加。关于细胞如何减少溶酶体/液泡的膜组分以维持稳态,目前尚缺充分探索。..我们前期工作发现“早平台期液泡降解现象(EVT)”:在随营养消耗而进入生长平台期的酵母细胞中,液泡上多种膜蛋白进入液泡内腔被降解。EVT需要利用ESCRT复合体、Rab控制的囊泡融合因子、Atg8三组蛋白。..参照近年相关研究,我们提出假说从内体-液泡互作角度阐释EVT的机制: ESCRT通过调控内体的Rab级联转化促进Ypt7的激活;Ypt7进而调控液泡膜的动态变化、实现EVT底物降解;Atg8通过与相关蛋白的互作参与EVT调控。本项目旨在对这一假说及其替代假说进行充分检验,辨析EVT底物降解的实现方式,并确定Atg8的调控靶点。..我们的工作有望促进对环境改变引起的液泡动态变化之机制和其中涉及的内体-液泡互作模式的认知。
溶酶体/液泡是真核细胞的基本细胞器,主要负责降解功能。这一细胞器自身组分如何被降解目前研究仍较初步,已报道的分子机制丰富多样。本项目以进入营养耗尽的平台期过程中所发生的液泡膜蛋白降解过程为模型,探索溶酶体/液泡自身组分降解的特征和机制,重点关注内吞体-液泡互作相关蛋白机器的作用和自噬蛋白Atg8的非经典功能。现有文献一般推断液泡膜蛋白进入液泡内腔降解可能通过若干种不同方式,包括通过宏自噬包裹、以微自噬的方式内陷、以细胞器融合造成intralumenal fragment等。我们的研究表明,以Atg蛋白介导的宏自噬和若干其他自噬相关通路不直接参与液泡膜蛋白降解,而自噬蛋白Atg8则以lipidation不依赖的方式调控液泡内腔囊泡状结构的形成。ESCRT复合体、HOPS复合体、Rab蛋白、SNARE蛋白均为液泡膜蛋白降解所必须,但后三种膜融合相关蛋白的参与形式不是intralumenal fragment通路。ESCRT复合体直接参与液泡膜已有蛋白的降解,这种降解不需要经过内吞体的转运,而内陷囊泡中会携带部分细胞质组分。这些证据倾向于液泡膜蛋白降解以微自噬发生的模型。针对Atg8以lipidation不依赖的方式参与液泡膜蛋白降解,我们发现Atg8仍需要被招募到液泡膜上,但这一招募是通过与液泡膜蛋白Hfl1互作实现。Atg8与Hfl1作用于ESCRT的下游,二者的缺失造成同样的表型,即液泡出现液泡内囊泡状结构的积累,且体积大于正常细胞形成的液泡内腔囊泡。我们的工作初步确定了营养逐渐匮乏所导致的液泡膜蛋白降解过程的形态特征,验证了若干关键蛋白机器在这一过程中的作用,发现自噬蛋白Atg8的新作用方式,为后续研究建立良好基础。
{{i.achievement_title}}
数据更新时间:2023-05-31
Ordinal space projection learning via neighbor classes representation
基于纳米铝颗粒改性合成稳定的JP-10基纳米流体燃料
Image super-resolution based on sparse coding with multi-class dictionaries
Phosphorus-Induced Lipid Class Alteration Revealed by Lipidomic and Transcriptomic Profiling in Oleaginous Microalga Nannochloropsis sp. PJ12
Numerical investigation on aerodynamic performance of a bionics flapping wing
植物ESCRT复合物组分蛋白的泛素化修饰及其调控膜蛋白转运和降解的分子机制研究
磷饥饿时植物液泡膜质子泵及膜蛋白组分适应性变化研究
自噬在拟南芥根尖细胞降解液泡生成中的作用机制
Rab 家族新成员Rab236结构与功能研究