Accurate measurement of heat transfer and solidification state of casting slab and precise prediction of liquid and solid fraction and final solidifying end are both the important premise for stabilizing and enhancing slab quality and the key factor for high efficient continuous casting. This proposal intends to carry out the systematic study of complex heat transfer / solidification behavior in continuous casting slab, and puts forward a new method for on-line detecting solidification process of slab. From integration of collaborative research of on-line detection and numerical simulation, the secondary cooling heat transfer calculation model by means of inverse problem with temperature measurement is developed. By aiming at overall consideration of metallurgy criterion, casting technology and cooling water volume, this project studies the slab quality control method based on artificial intelligence algorithm. And on this basis, the proposal develops the secondary cooling process visualization system for continuous casting slab, and further researches the problems of slab cooling uniformity. This project adopts the all-round, multi-level research thought of on-line detection combined with numerical simulation, demonstration at site combined with theoretical analysis, to further reveal the slab heat transfer behavior and solidification state transition coordination mechanism from various angles, and presents the prediction criterion of liquid and solid fraction and final solidifying end of continuous casting slab. The results will enrich and expand casting slab solidification process on-line detection theory and research methods, and also provide a solid theoretical foundation and scientific basis for secondary cooling control of complicated casting production.
准确测量连铸生产过程中铸坯的传热/凝固状态,精确预报铸坯的液固相分数及凝固末端位置,既是稳定和提高铸坯质量的重要前提,又是实现高效连铸技术的关键环节。本项目拟开展以连铸坯复杂传热/凝固行为为主线的系统研究,提出铸坯凝固进程在线检测的新方法;从集成在线检测与数值模拟的协同研究入手,建立基于实测温度的二冷换热反问题优化模型;以统筹和兼顾冶金准则、浇铸工艺、冷却水量等为目标,提出基于人工智能的铸坯质量调控方法;在此基础上,开发连铸二冷过程控制3D可视化系统,并对铸坯冷却均匀性问题进行深入研究。本项目采用在线检测与数值模拟结合、现场实证与理论解析整合的全方位、多层次研究思路,旨在从多角度深入揭示铸坯的传热行为与凝固状态转变机制,进而提出铸坯液固相分数及末端位置跟踪定位的预测判据,其结果也将丰富并拓展连铸坯凝固进程在线检测理论与研究方法,为连铸生产的复杂二冷过程控制提供坚实的理论基础和科学依据。
冶金连铸作为现代钢铁生产链中的核心部分,其连铸装备与技术能力的进步,对于带动冶金行业发展,优化钢铁工业与产品结构,有着重要的促进作用。准确测量连铸生产过程中铸坯的传热/凝固状态,精确预报铸坯的液固相分数及凝固末端位置,既是稳定和提高铸坯质量的重要前提,又是实现高效连铸技术的关键环节。. 本项目拟开展以连铸坯复杂传热/凝固行为为主线的系统研究,提出铸坯凝固进程在线检测的新方法。在理论解析的基础上,建立凝固分数在线检测数学模型,设计和搭建物理模拟实验系统, 同时采用液-固耦合受迫振动有限元计算模型对受迫振动的动态响应进行仿真,研究结果证实了检测方案的可行性。从集成在线检测与数值模拟的协同研究入手,建立基于实测温度的二冷换热反问题优化模型;以统筹和兼顾冶金准则、浇铸工艺、冷却水量等为目标,提出基于人工智能的铸坯质量调控方法,且研究结果证实了优化方法的准确度。在此基础上,开发连铸二冷过程控制3D可视化系统,直观清晰呈现铸坯冷却历程,细致了解和掌握铸坯传热与凝固状态,为考察铸坯的传热与凝固状态提供“可视”手段。
{{i.achievement_title}}
数据更新时间:2023-05-31
一种基于多层设计空间缩减策略的近似高维优化方法
猪链球菌生物被膜形成的耐药机制
结直肠癌免疫治疗的多模态影像及分子影像评估
智能煤矿建设路线与工程实践
药食兼用真菌蛹虫草的液体发酵培养条件优化
连铸凝固坯壳厚度电涡流在线检测方法研究
连铸坯的凝固行为及其高温性能调控机制的研究
连铸坯凝固组织及其中心缺陷预测模型的研究
利用间断交流磁场控制连铸铸坯初期凝固的研究