可压缩Navier-Stokes-Poisson方程波的稳定性

基本信息
批准号:11601165
项目类别:青年科学基金项目
资助金额:17.00
负责人:尹海燕
学科分类:
依托单位:华侨大学
批准年份:2016
结题年份:2019
起止时间:2017-01-01 - 2019-12-31
项目状态: 已结题
项目参与者:周海军,杜静,梁言
关键词:
NavierStokesPoisson方程稳定性稀疏波Cauchy接触间断问题
结项摘要

Plasma, e.g. dusty and the neon lights in the internal of star and so on, could simulate the transport of charged electrons and ions in the process of the mutual collision. These electrons and ions form the self-consistent electric potential. We usually use two-fluid Navier-Stokes-Poisson (NSP) equation to describe the dynamics of the charged particles in the collisional plasma under the influence of the self-consistent electric potential. This project is concerned with the stability of waves for one-dimensional non-isentropic one-fluid and two-fluid Navier-Stokes-Poisson equation. For the one-fluid NSP equation, the applicant expects to obtain the stability of the contact discontinuity for the Cauchy problem in the case where the electron background density satisfies an analogue of the Boltzmann relation. For the two-fluid NSP equation, the applicant expects to respectively obtain the stability of rarefaction wave and composite wave (the superposition of rarefaction wave and contact discontinuity ) for the Cauchy problem in the case where the electron density and ion density satisfy the quasineutral assumption.

尘埃, 恒星内部的霓虹灯等等离子体在相互碰撞的过程中会产生带电的电子和离子。这些电子和离子会形成自一致的电势。在自一致电势的影响下, 我们往往用双极的Navier-Stokes-Poisson方程来描述带电物质的运动。本项目分别考虑一维非等熵单极和双极NSP方程波的稳定性。假设电子的背景密度满足类似的Boltzmann关系时, 申请人期望获得单极NSP方程柯西问题接触间断的稳定性。当电子的密度和离子的密度满足拟中性假设时, 申请人期望分别获得双极NSP方程柯西问题稀疏波和复合波(稀疏波和接触间断的复合)的稳定性。

项目摘要

本项目主要研究了非等熵的Navier-Stokes-Poisson方程复合波(稀疏波和接触间断波的复合)的稳定性、非等熵微极流模型边界层解的稳定性及其收敛率、平面Magnetohydrodynamics模型复合波(亚音速边界层,稀疏波和接触间断波)的稳定性以及 Navier-Stokes/Allen-Cahn方程复合波(稀疏波和接触间断波的复合)的稳定性等相关问题。以上研究的四种模型都可以看成Navier-Stokes方程的一种推广。

项目成果
{{index+1}}

{{i.achievement_title}}

{{i.achievement_title}}

DOI:{{i.doi}}
发表时间:{{i.publish_year}}

暂无此项成果

数据更新时间:2023-05-31

其他相关文献

1

惯性约束聚变内爆中基于多块结构网格的高效辐射扩散并行算法

惯性约束聚变内爆中基于多块结构网格的高效辐射扩散并行算法

DOI:10.19596/j.cnki.1001-246x.8419
发表时间:2022
2

一种改进的多目标正余弦优化算法

一种改进的多目标正余弦优化算法

DOI:
发表时间:2019
3

地震作用下岩羊村滑坡稳定性与失稳机制研究

地震作用下岩羊村滑坡稳定性与失稳机制研究

DOI:10.16285/j.rsm.2019.1374
发表时间:2020
4

采用深度学习的铣刀磨损状态预测模型

采用深度学习的铣刀磨损状态预测模型

DOI:10.3969/j.issn.1004-132x.2020.17.009
发表时间:2020
5

瞬态波位移场计算方法在相控阵声场模拟中的实验验证

瞬态波位移场计算方法在相控阵声场模拟中的实验验证

DOI:
发表时间:2020

相似国自然基金

1

可压缩Navier-Stokes-Poisson 方程解的大时间行为

批准号:10926076
批准年份:2009
负责人:张国敬
学科分类:A0306
资助金额:3.00
项目类别:数学天元基金项目
2

可压缩Navier-Stokes-Poisson方程及Euler-Poisson方程的若干问题

批准号:11001067
批准年份:2010
负责人:张国敬
学科分类:A0306
资助金额:17.00
项目类别:青年科学基金项目
3

可压缩流体力学方程组波的稳定性研究

批准号:11801444
批准年份:2018
负责人:刘进静
学科分类:A0306
资助金额:22.00
项目类别:青年科学基金项目
4

Euler-Poisson方程稳态解及Navier-Stokes-Poisson方程解的结构分析

批准号:11871012
批准年份:2018
负责人:张国敬
学科分类:A0306
资助金额:53.00
项目类别:面上项目