To meet the requirement of capacitor-varistor multifunctional devices for the protection of micro-nano electrical devices in future, the preparation of the gradient doped CaCu3Ti4O12/ZnO parallel capacitor-varistor multilayer thin films are proposed in this application, which will promote the miniaturization and multifunction of devices. The structure of the composite thin films can be controlled by gradient doping and atmosphere sintering. The heat and mass transfer progress of the composite thin films interfaces will be studied by laser scanning confocal microscopy. The interface structure and morphology of the composite thin films will be analyzed by microcosmic characterization. The interfacial formation mechanism and the dynamic mechanics of the interfacial moving will be investigated. The influences of the different interfaces on the dielectric and varistor characteristics will be investigated, including the interfaces between the different thin film materials, the different gradient layers, the film and atmosphere, the film and substrate, the film and electrode. The effects of the parallel multilayer structure and gradient doping on the dielectric and varistor characteristics will be also discussed. It is expected to obtain a stable and reliable preparation technology of brilliant parallel multilayer capacitor-varistor thin films. This work can improve the complicated preparation method and the poor performance of the homogenous capacitor-varistor material. It can also provide a new clue for exploring new properties of other electrical materials. In addition, valuable research experience on interfacial researching and performance of other materials can be obtained.
本课题瞄准未来集成电路中微纳电子器件保护对电容压敏双功能器件的需求,构建梯度掺杂且具有并联结构的钛酸铜钙/氧化锌电容压敏多层薄膜,突破电子器件小型化和功能一体化的技术瓶颈。本项目拟采用梯度掺杂和气氛烧结精确控制复合薄膜的结构;应用激光扫描共聚焦显微镜动态研究烧结过程中复合薄膜界面的传热传质过程;运用综合微观表征手段详细分析复合薄膜界面结构、形貌;探讨界面形成机理及界面物质迁移的动力学机制;阐明复合薄膜之间、梯度层之间、薄膜与气氛、薄膜与基底、薄膜与电极的界面与复合薄膜压敏和介电性能的关系;揭示梯度掺杂和并联多层结构对复合薄膜介电和压敏性能的影响机制;获得优异综合性能电容压敏双功能薄膜器件稳定、可靠的制备技术。本研究不仅可以解决目前单一电容压敏材料制备难、性能差的关键问题,还为研究其它电子材料的新性能提供了新的思路,也为研究复合材料界面与性能的调控提供了重要的研究基础。
随着大规模集成电路的发展,对电子元器件的微型化要求越来越高。电容压敏材料不仅具有较高的非线性特性还有较高的介电性能,可以满足电压保护需要又可以满足高频噪声吸收的需要,实现材料的复合多功能化,突破电子器件小型化和集成化的技术瓶颈。本项目采用溶胶-凝胶法制备一系列的电容压敏双功能薄膜,研究了稀土氧化物掺杂和稀土氧化物梯度掺杂对薄膜的显微结构和电性能的影响。优化ZnO薄膜的压敏性能和CCTO薄膜的介电性能,制备出既能满足压敏性能又能满足介电性能的复合薄膜。通过合理化复合膜的稀土氧化物掺杂梯度来提升复合膜的综合电性能。本项目不仅可以解决目前单一电容压敏材料制备难、性能差的关键问题,还为研究其它电子材料的新性能提供了新的思路,也为研究复合材料界面与性能的调控提供了重要的研究基础。在项目执行过程中,共发表SCI收录论文18篇,申请国家发明专利3项,其中授权国家发明专利2项。项目组成员共参加国际国内会议4次,做分会邀请报告1次。共培养硕士生12人,目前毕业硕士研究生9名。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
粗颗粒土的静止土压力系数非线性分析与计算方法
正交异性钢桥面板纵肋-面板疲劳开裂的CFRP加固研究
特斯拉涡轮机运行性能研究综述
钛酸锶钡薄膜取向生长、界面调控及介电调谐性能研究
钛酸铜钙薄膜的介电弛豫和介电反常微观机制研究
钙钛矿薄膜/YSZ界面微结构对电输运性能的影响
钛酸钙铜巨介电的关联性研究