Nowadays, the demand for glucose sensor has been surging across the sensor market. Given that the enzyme sensor has some application limits due to its insufficient stability, the development of enzyme-free glucose electrochemical sensors attracts tremendous concerns of academic field. However, the existing non-enzymatic electrochemical sensors are still facing problems, including the low sensitivity as well as the passivation prone occurring in commonly used noble metals or transition metals related sensing materials. This project aims to figure out an efficient solution. Firstly, three-dimensional porous architecture of graphene nanocomposites will be firmly built, by use of nanodiamond with good electrochemical activity and tunable microstructure, intercalating homogeneously into graphene oxide (GO) sheets and simultaneously realizing GO reduction, via multiple chemical and electrochemical methods which are controllable, facile and eco-friendly. Secondly, seeing that boronic acid derivatives are important ligands for specific recognition of cis-diol containing molecules such as glucose in alkaline solutions, we will introduce 3-aminophenylboronic acid onto nanodiamond-intercalated graphene composites with high yield, by means of several functionalization approaches. In this way, the enzyme-free glucose sensing material with remarkable feature will be fabricated. Thirdly, the mechanism of charge variation functioned by the binding coefficient between graphene composites and glucose, will be fully investigated, and the corresponding electrochemical sensing mode will be meticulously designed. Comprehensive evaluation of the whole sensing system will be carried out, consisting of analysis for each sensing indicator and the performance assessment in clinical practice. Furthermore, the graphene-based sensing material will be applied in the microfluidic-based lab-on-chip device for the extended exploration. Thereby, novel functionalized nanodiamond-intercalated graphene composites will be well fabricated, combined with the in-depth theoretical study of microstructure adjustment, synergistic effect among the components, reaction mechanism and the sensing system. This study will lay a solid technical and theoretical foundation for developing high-quality non-enzymatic glucose sensor with notable properties of high sensitivity, pinpoint accuracy, sufficient stability, and wide applicability as well.
当前葡萄糖传感器的市场需求剧增,而含酶传感器因稳定度不足等因素制约了应用,因此发展葡萄糖无酶传感器成为国内外研究热点。现有无酶电化学传感器仍存在灵敏度较低、常用贵金属或过渡金属相关传感材料易钝化等问题。本项目拟采用多种可控、易行且环保的制备手段,将电化学活性好、微观结构可调的纳米金刚石均匀穿插在石墨烯片层间,同步实现石墨烯高度还原,建立电化学性能优异的石墨烯三维多孔构型。通过3-氨基苯硼酸(3-APBA)在复合材料的高效负载,利用3-APBA对顺二醇结构的识别功能,获得新型葡萄糖无酶传感材料。深入探讨功能复合材料与葡萄糖作用的电位变化机理,设计电化学传感模式,并综合评价各传感指标,进而开展临床及微流体器件上的应用拓展研究。本项目通过对石墨烯复合材料微观构型调控、各组分协同效应、反应机理和传感机制的系统研究,为开发灵敏精确、稳定实用、适用范围广的微型葡萄糖无酶传感器奠定重要的实验和理论基础。
当前生物传感器微型化、集成化、智能化的发展趋势对传感材料的性能提出了越来越高的要求,亟需开发具有高灵敏度、宽线性检测范围、抗干扰能力强、高稳定性的生物传感体系。本研究以“结构-功能独立组分”为指导思想,将复合材料中的“结构组分”与“功能组分”明确划分,设计并研制了一系列具有优异电化学生物传感性能的材料体系。针对无酶葡萄糖电化学传感,开发了纳米金刚石嵌层的立方氧化亚铜复合材料传感电极和MOF衍生的氮掺杂碳包裹镍纳米颗粒复合材料传感电极;针对过氧化氢无酶传感,研制了基于金纳米粒子插层石墨烯复合材料的电化学传感电极和基于铜基纳米氧化物原位组装碘氧化铋复合结构的光电化学传感电极;针对溶菌酶传感,设计了重氮功能化石墨烯复合材料作为无标记传感电极。综合利用“结构组分”的稳定三维结构和“功能组分”的高电化学活性,使复合材料展现出优秀的电化学传感性能。通过系统的测试和理论分析,研究了微观界面处的载流子热力学和动力学过程,揭示了“结构组分”和“功能组分”对材料传感性能的影响机制,为设计新型高效的电化学传感复合材料体系提供了理论指导。本研究还针对植入式的微型生物传感器件的特殊供电需求,研制了与其相匹配的储能器件材料体系,包括三维多孔海绵状TiO2/Ti结构,NiCo双层氢氧化物/石墨烯复合结构和CoFe2S4纳米片阵列,并成功组装成模型器件,获得了良好的性能。本研究对于高效生物传感和储能材料的研究,符合目前传感器微型化、集成化、实时监测化的发展趋势,将为新型优质传感器的研发提供有力的技术支持和理论指导。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
路基土水分传感器室内标定方法与影响因素分析
宁南山区植被恢复模式对土壤主要酶活性、微生物多样性及土壤养分的影响
面向云工作流安全的任务调度方法
桂林岩溶石山青冈群落植物功能性状的种间和种内变异研究
基于石墨烯-贵金属纳米材料的葡萄糖无酶传感器的研究
石墨烯/金属复合纳米材料的可控合成及其在无酶型葡萄糖传感器应用的研究
原位插层聚合制备石墨烯/高分子杂化材料及其功能调控的机理研究
基于多功能石墨烯量子点的无酶催化荧光传感器的制备和应用