Production biofuels from biomass by sub-supercritical liquefaction is a new and efficient technology to utilize alternative energy, which has a wide range of potential applications. However, the biofuels obtained by existing technologies has shortcomings of high oxygen content and low thermal stability etc. Therefore, this project presents a new method of whole process oxygen controlling with aluminum-assisted lignocellulosic materials in situ hydrogenation-liquefaction for aviation biofuel production through preparation of high-quality biofuel. The reaction mechanism is to be studied systematically and deeply by theoretical analysis and experiment. Meanwhile, the effect of pretreatment (e.g. torrefaction) on biomass composition, especially the oxygen content and moisture content of the law will be studied as well as grasp the pretreatment mechanism of oxygen removal and the law of oxygen controlling. In addition, aluminum-assisted in situ hydrogenation -liquefaction reaction system will be established and the effect of factors (e.g. temperature, retention time, hydrogen pressure and catalysts) on liquefaction of the law will be studied. The project will also carry out the optimized analysis of the whole process oxygen controlling for bio-oil quality, and establish a molecular dynamics model for the transformation of oxygen-containing functional groups in aviation biofuel as well as evaluate the properties of aviation biofuel, such as volatility, cleanse and fluidity. Finally, the reaction mechanism and governing factors of the formation of aviation biofuel from aluminum assisted in situ hydrogenation liquefaction based on the whole process oxygen controlling will be revealed through the analysis of characteristics and distribution of oxygen-containing functional groups in biofuels, and offer scientific evidence and theoretical support for the production of high performance aviation biofuel from lignocellulose biomass.
通过亚超临界液化方法将纤维素类生物质转化为航空生物燃料是极具应用前景的航空替代能源新技术,本项目提出了基于全程控氧的木质纤维素铝基原位供氢液化制航空生物燃料新方法,拟通过理论与实验相结合的手段对该过程反应机理进行系统深入研究。改变预处理条件考察其对木质纤维素生物质组成结构及含氧官能团的影响;利用高压反应釜建立铝基原位供氢液化反应体系并开展系统实验,结合FTIR、GC-MS、HPLC-MS、CCSEM-EDX等分析手段研究生物油的官能团种类、化学组分及残渣结构,进而掌握液化条件对航空生物燃料油的合成路径和影响规律。阐明全程控氧对生物油品质的影响规律,建立航空生物燃料含氧官能团的转化分子动力学模型并对航空生物燃料的挥发性、洁净性、流动性等指标进行测试评价。最终揭示基于全程控氧的木质纤维素铝基原位供氢液化制取生物燃料的反应机理与控制因素,为木质纤维素制取高性能航空生物燃料提供科学依据和理论支持。
通过亚超临界液化方法将纤维素类生物质转化为航空生物燃料是极具应用前景的航空替代能源新技术,本项目提出了基于全程控氧的木质纤维素铝基原位供氢液化制航空生物燃料新方法,拟通过理论与实验相结合的手段对该过程反应机理进行系统深入研究。改变预处理条件考察其对木质纤维素生物质组成结构及含氧官能团的影响;利用高压反应釜建立铝基原位供氢液化反应体系并开展系统实验,结合FTIR、GC-MS、HPLC-MS、CCSEM-EDX等分析手段研究生物油的官能团种类、化学组分及残渣结构,进而掌握液化条件对航空生物燃料油的合成路径和影响规律。阐明全程控氧对生物油品质的影响规律,建立航空生物燃料含氧官能团的转化分子动力学模型并对航空生物燃料的挥发性、洁净性、流动性等指标进行测试评价。铝水原位供氢条件下,生物油中的化学化学成分发生明显的变化,其中酮、酸、醛、酚类等物质降低,而烃类物质的含量大幅度增加,高达30.23%。总酸值由生物原油的99.89降低到改性后的(6.75–24.93)mg KOH/g oil,含水量由原油中的14.26降低到改性后的(2.98–12.73)wt%。氧元素从生物原油中的25.62降低到改性生物油的(7.02–13.79)wt%;热值由原油的29.51增加到改性后的(36.08–38.53)MJ/kg。370℃改性后生物原油蒸馏出馏程为150-250℃的低沸点生物油,按生物油与航空燃料的掺混比例1:19制备航空生物调和燃料。虽然混合燃料的酸值有所增加,但对铜片腐蚀程度不明显;同时闪点也有所降低,实际胶质仍高于航空煤油的使用标准,其它指标均已达到使用标准。
{{i.achievement_title}}
数据更新时间:2023-05-31
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
宁南山区植被恢复模式对土壤主要酶活性、微生物多样性及土壤养分的影响
疏勒河源高寒草甸土壤微生物生物量碳氮变化特征
基于全模式全聚焦方法的裂纹超声成像定量检测
当归补血汤促进异体移植的肌卫星细胞存活
生物质制氢氢燃料技术的研究
原位供氢条件下生物质水热转化制备液体燃料基础研究
基于微藻生物燃料电池技术的绿藻光解水制氢机理研究
储氢、供氢新概念-电解液氨制氢及其反应机理