The hydrogen permeation membrane with high permeability, high selectivity, high chemical stability, high thermal stability and mechanical strength is focused in hydrogen production. Two dimensional (2D) materials applied in gas separation has great potential. In this proposal, a novel hydrogen permeation membrane is fabricated based on MXene material with the interlayer spacing precisely regulated and gas transmission channel vertically aligned to improve the permeation flux and selectivity. The details of the research include: 1) Fabrication of nano pieces MXene material inserted graphene (rGO) to construct gas diffusion channels, study of the interlayer spacing regulation and channel formation mechanism. 2) Design and preparation of MXene/rGO composite membrane vertically aligned on porous Al2O3 hollow fiber with interlayer spacing as the dominant transmission channel to reduce the transmission resistance. 3) Assembly of two stage hydrogen permeation membrane reactor based MXene/rGO vertical alignment, study of the matching mechanism between NH3 decomposition and hydrogen separation kinetics rate, and optimization of design principle. This project is proposed to elucidate the optimized mechanism as well as to precisely regulate the interlayer spacing of MXene/rGO composite membrane vertically aligned on porous Al2O3 hollow fiber. The key technique will be developed for the hydrogen permeation MXene/rGO composite membrane vertically aligned on porous Al2O3 hollow fiber with high hydrogen permeation, high activity and good stability. This research program will also provide novel hydrogen generation and develop novel membrane separation materials theoretically and technically.
本项目基于二维MXene材料,通过精准调控其片层间的层间距和垂直阵列结构以实现层间距作为主导气体扩散通道,提升透氢膜的渗透性能。主要研究:1)采用静电自组装法在MXene片层之间插入石墨烯(rGO)纳米碎片精准调控层间距以构筑气体扩散通道,研究层间距调控机制和传输通道形成机理。2)通过冰晶定向生长冷冻法制备多孔Al2O3中空纤维表面垂直阵列MXene/rGO膜,实现层间距作为主导定向传输通道,降低传输阻力,提高复合膜的渗透通量和选择性。3)设计和构建两段式基于MXene/rGO复合透氢膜反应器,研究NH3分解制氢与膜分离在动力学上的匹配机制和优化设计原则。课题旨在探索多孔Al2O3中空纤维表面垂直阵列MXene/rGO复合膜的层间距精准调控机制和传输通道的优化机理,掌握高渗透性和高选择性复合透氢膜反应器的优化设计原则和关键技术,为新型分离膜材料研制和气体分离技术提供理论和技术支撑。
二维(2D)材料应用于分离领域具有极大的潜力。本项目基于二维MXene材料,通过精准调控其片层间的层间距和垂直阵列结构以实现层间距作为主导的气体传输通道,从而提高透氢膜的渗透通量和选择性。主要研究内容:在MXene片层之间分别插入Pd、Ni及石墨烯(rGO)纳米碎片以构筑气体扩散通道,研究层间距调控机制和传输通道形成机制。制备多孔Al2O3中空纤维支撑体表面垂直阵列层状MXene/rGO膜,主要利用MXene片层间距作为气体分子的主导传输通道,降低传输阻力,为气体提供定向的传输通道,提高MXene/rGO复合膜的渗透通量和选择性。在研期间项目负责人相关研究成果在Green Chemistry,Journal of Membrane Science,Chemical Engineering Journal等权威期刊上发表论文15篇,其中SCI一区论文10篇,二区3篇,三区1篇,中文核心1篇,发明专利3项,培养博士研究生1名,硕士研究生4名。课题旨在探索多孔陶瓷Al2O3中空纤维表面垂直阵列MXene/rGO复合膜的层间距精准调控机制和传输通道的优化机理,掌握高渗透性和高选择性的MXene/rGO复合透氢膜反应器的设计和关键技术,为新型分离膜材料研制和气体分离技术提供理论和技术支撑。本项目在设计思路、制备方法、传质机理及其气体分离中应用等面取得的研究结果,为二维材料在其它相关膜领域的研究开辟了新思路。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于旋量理论的数控机床几何误差分离与补偿方法研究
出租车新运营模式下的LED广告精准投放策略
岩石/结构面劣化导致巴东组软硬互层岩体强度劣化的作用机制
骨外器官来源外泌体对骨骼调控作用的研究进展
单狭缝节流径向静压气体轴承的静态特性研究
非对称钙钛矿混合质子电子导体中空纤维透氢膜的制备及透氢性能研究
陶瓷中空纤维/MXene复合膜制备及丙烷制丙烯和氢气的催化-膜分离机制研究
三维多孔类石墨烯MXene的可控制备及储氢性能研究
新型混合导体钙钛矿中空纤维透氧膜的制备、表征及应用