Hydrogen, as a clean energy, is mainly produced through the pyrolysis method of hydrocarbons, following with purification processes such as PSA. However, the pyrolysis reaction is limited by thermodynamic equilibrium, leading to high operation temperature and low conversion. In this proposal, a novel catalytic membrane reactor, which integrates chemical reaction with membrane separation, is developed to improve the efficiency of propane dehydrogenation to propylene and hydrogen. The details of the research include: 1) Fabrication of a two-dimension material named MXene using hydrofluoric acid etching, in which the interlayer spacing is tailored by the intercalation of Ni2+ or Pd2+; 2) Preparation and optimization of ceramic Al2O3 hollow fiber with microchannels by a modified phase inversion-sintering technique. Preparation and characterization of the asymmetric Al2O3 hollow fiber /MXene composite membrane via vacuum filtration; 3)Design and optimization of PtSn-Al2O3/MXene hollow fiber membrane reactor for propane dehydrogenation to propylene/hydrogen through impregnation of PtSn catalyst in the porous Al2O3 ceramic hollow fiber. This project is proposed to elucidate the assemble procedure as well as to regulate the interlayer spacing of laminar MXene membrane. The hydrogen permeation mechanism through the MXene membrane is expected to clarify. The key technique will be developed to fabricate the hollow fiber composite membrane with high hydrogen permeation, high catalytic activity and good stability towards propane dehydrogenation to propylene and hydrogen. This research program will also provide novel hydrogen energy generation process and develop new membrane separation materials theoretically and technically.
氢能作为可再生清洁能源,主要通过烃类裂解-提纯制得。催化膜反应器可将丙烷裂解制丙烯与氢气提纯耦合一体,打破反应平衡,提升转化率,降低成本。课题拟将二维MXene透氢膜负载于PtSn-氧化铝中空纤维上,构建反应—纯化一体的丙烷制丙烯/纯氢新型膜反应-分离器,提高丙烷制氢效率。主要研究:1)HF刻蚀制备二维MXene,并以Ni2+或Pd2+修饰改性;2)相转化法制备具有微通道结构的非对称氧化铝中空纤维,并以真空抽滤获得层间距可控的氧化铝中空纤维/MXene复合膜,探索膜结构与性能构效关系;3)浸渍法构建PtSn-Al2O3/MXene催化膜反应器,优化丙烷制丙烯/氢气反应-分离性能。课题旨在探索层状MXene膜组装机制及层间距调控方法,发现MXene膜氢渗透机理,掌握高透氢率、高选择性及热稳定性的低成本复合中空纤维催化膜关键技术,为新型氢能制备技术与分离膜材料研制提供理论和技术支撑。
氢能作为可再生清洁能源,主要通过烃类裂解-提纯分步制得,常受热力学平衡限制,很难提升转化率,生产成本较高。本课题主要将二维MXene透氢膜负载于AAO模板或氧化铝中空纤维上,构建了氢气渗透膜分离器和反应—纯化耦合的膜反应-分离器,以提高丙烷脱氢效率,研究内容主要有:1)刻蚀法制备二维MXene,并以Ni2+或Pd2+修饰改性,以提高氢渗透性能;2)相转化法制备具有微通道结构的非对称中空纤维,并以真空抽滤获得了中空纤维/MXene复合膜,探索了膜结构与氢渗透性能;3)为提升MXene膜的稳定性,基于MXene纳米片表面丰富的-OH,以热交联方式使MXene纳米片间发生羟基脱水,形成Ti-O-Ti键,有效抑制了MXene膜在水溶液中的溶胀现象,研究了驱动电压、施压压力、膜厚度等对水溶液中离子的筛分以及重金属离子的脱除性能;4)构建了中空纤维催化膜反应器,通过数学模拟优化了丙烷制丙烯/氢气反应-分离性能。本课题已公开发表论文16篇,其中SCI一区论文6篇,二区6篇,四区2篇,中文核心2篇;会议论文9篇,其中口头5人次;培养研究生8名,其中博士1名;授权发明专利11项;获得山东省自然科学二等奖1项。课题成果丰富了氢气分离纯化体系;将反应-分离一体化设计,大大简化了化工生产工艺,提高反应性能,将为高性能膜反应器研制及氢气分离纯化技术研发提供有效的理论依据,并为多孔陶瓷支撑的氧渗透膜、氢渗透膜、其他二维支撑分离膜的研制提供技术支持。
{{i.achievement_title}}
数据更新时间:2023-05-31
丙二醛氧化修饰对白鲢肌原纤维蛋白结构性质的影响
TGF-β1-Smad2/3信号转导通路在百草枯中毒致肺纤维化中的作用
二维MXene材料———Ti_3C_2T_x在钠离子电池中的研究进展
人β防御素3体内抑制耐甲氧西林葡萄球菌 内植物生物膜感染的机制研究
自组装短肽SciobioⅡ对关节软骨损伤修复过程的探究
丙烷氧化脱氢制丙烯高效催化剂及反应过程研究
多孔Al2O3中空纤维表面垂直阵列MXene/rGO复合膜的制备及透氢机理研究
石墨型氮掺杂碳材料可控制备及其催化丙烷氧化脱氢制丙烯性能研究
高性能纳米限域的丙烷脱氢制丙烯催化剂研究