In order to fulfill the demand of the tissue damage emergency treatment in the field, battlefield and daily life. This project aims at the design and characterization of a novel responsive bioadhesive system. A "bridging polymer" and tough medical patch were prepared, and the adhesives adhere to the damaged tissue by electrostatic interactions, covalent bonds, and physical interpenetration. The bioadhesive system would have strong and rapid adhesion to tissues even in the presence of body fluids or blood. More importantly, by introducing responsive chemical linkages, the strong adhesion could be eliminated in an “on-demand” manner to facilitate easy removal of the repair materials from the cured tissues, which could provide a vital feature in many applications. The aim is to avoid the technical difficulties and secondary injuries caused by surgical suture and offset the functional defects traditional adhesives have brought. To achieve this, we will first focus on the understanding of the relationship and bonding/separation mechanisms between the adhesive strength and functional groups of bioadhesives. By combining mechanical tests, biological evaluation, and preliminary animal experiments, we will fully evaluate the biocompatibility and effectiveness of the designed bioadhesives. The development of the new responsive bioadhesives will contribute to the breakthrough in biomedical applications as well as the extension of industrial chain.
针对野外、战场及日常生活中组织损伤应急处理的需求,本项目致力于设计和开发一类响应型的医用粘合剂体系,拟通过构建具有刺激响应性官能团的“桥连高分子”和高强度医用敷片,在化学交联、静电作用和物理缠结等多重作用下,这类桥连高分子可使医用敷片与损伤组织发生即时高效的粘合,且不会受到血液、体液等湿润环境的影响。如后续创面需进一步转移治疗,则可通过特定的外界刺激打开桥连高分子中的活性化学键,进而使敷片与组织之间实现灵活分离;即可避免手术缝合带来的技术困难和二次伤害,又可弥补传统单一功能粘合剂的局限性。本项目拟重点探究桥连高分子的化学结构对粘合/分离强度的影响和作用机理,并通过力学性能测试、生物学检测、动物实验等手段系统研究,评价其安全性、有效性及灵活性。通过揭示上述关键科学问题,有望加快实现响应粘合体系在生物医学应用的突破和产业链延伸。
本项目针对医疗条件不足的环境下组织损伤应急处理的实际需求,开发了一类智能响应型粘合体系;目的是用于医疗条件不足时组织损伤的应急处理,为进一步转移治疗创造条件并争取时间。在项目执行期间,首先构建了一类含有刺激响应性官能团的“桥连高分子”结合高强度水凝胶医用敷片,在化学交联、静电作用和物理缠结等多重作用下,医用敷片与组织发生即时高效的粘合。后续如需进一步转移治疗,则可通过特定的外界刺激打开桥连高分子中的响应化学键,进而实现材料与组织灵活分离;有效弥补了手术缝合和传统纱布类辅料的局限性。在项目实施过程中,基于本项目的课题设计理念,我们也做了一系列关于组织粘合的平行/拓展探索,主要是针对临床实际应用方面,开展了一系列动物实验探究,对粘合材料体系进行系统全面的评价;初步研究成果表明本项目为组织应急处理粘合体系的发展提供了新的思路与借鉴,并针对临床实际应用建立相关动物模型,为制定临床前评价标准提供了坚实的基础。
{{i.achievement_title}}
数据更新时间:2023-05-31
涡度相关技术及其在陆地生态系统通量研究中的应用
氟化铵对CoMoS /ZrO_2催化4-甲基酚加氢脱氧性能的影响
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
基于 Kronecker 压缩感知的宽带 MIMO 雷达高分辨三维成像
小跨高比钢板- 混凝土组合连梁抗剪承载力计算方法研究
多刺激响应型纳米复合药物载体的设计和制备
基于工程化蛋白的生物医用粘合剂的制备和性能研究
基于多巴胺化学多功能刺激响应包膜型控释肥料的制备及性能研究
基于多重可控刺激响应型生物电催化构建生物分子逻辑门及其网络体系