Small hydrocarbons are very important energy resources and raw materials for some industrially important products and fine chemicals. The small hydrocarbons must be separated before they were used. According to statistics, the most costs come from the separation process of small hydrocarbons in the correlative petrochemical industry. So there is a need for the discovery of better materials that offer enhanced capacities for separation of small hydrocarbons. Furthermore, the development of improved separation technologies will lead to significant reduction in energy requirements and costs. In recent years, flexible porous metal-organic framework material has become hot spot and frontier fields of chemistry and material research, due to its convertibility on the pore structure, feasibility on functionalizing, and characteristic on dynamic responding. As an emerging class of porous materials, flexible metal-organic frameworks have recently shown great promise in separating the small hydrocarbons. However, the assembling process of these flexible porous metal-organic frameworks remains uncontrollable, and the dynamic structure is still lack of effective characterization method, and the relationship between the dynamic structures with the mechanism of their unique properties - - or even this mechanism itself - - is not yet identified. This project is focusing on these scientific issues, directed by separation functionalization of small hydrocarbons, proceeding from reasonably designing and constructing on flexible porous metal-organic frameworks, in order to reveal the detailed discipline of the assembling process, to establish and improve the characterization method on the dynamic structures, and uncover the mechanism of the framework's dynamic behaviors, and eventually get full study of this unique material: finding the inner regularities, leading into better functions in separation performance. Based on these results, some possible industrial applications will be explored. In a word, theories and experiments data are supplied to the separation process of actual small hydrocarbons by flexible metal-organic frameworks in this project.
轻质烃是非常重要的能源资源以及众多化工产品的原材料。将轻质烃类进行有效的分离,是高效利用轻质烃资源的前提条件。据统计,相关石化行业大部分的成本来源于轻质烃的分离过程。基于此,科技工作者不断地寻找高效、廉价的轻质烃分离材料。近年来,柔性多孔金属有机框架因其结构可裁剪性、易功能化以及动态响应特性而备受关注,其有望在轻质烃的高效分离方面发挥重要作用。目前,尚难以控制柔性多孔框架的组装过程,对此类柔性框架的动态结构还缺乏有效的表征手段,其产生特异性能的机理还有待深入探讨。本项目将围绕这些科学问题,以轻质烃分离功能为导向,从柔性多孔金属有机框架的合理设计与构筑出发,研究此类材料的构筑规律,建立和完善此类柔性材料动态结构的表征方法,探讨柔性框架动态行为的机理,揭示此类材料产生高效分离性能的本质。在此基础上,探索此类材料实际应用的途径,为柔性多孔框架材料应用于实际轻质烃类的高效分离提供理论及试验支持。
轻质烃是非常重要的能源资源以及众多化学化工产品的原材料。将轻质烃类进行有效的分离,是高效利用轻质烃资源的前提条件。据统计,相关石化行业大部分的成本来源于轻质烃的分离过程。基于此,科技工作者不断地寻找高效、廉价的轻质烃分离材料。近年来,柔性多孔金属有机框架因其结构可裁剪性、易功能化以及动态响应特性而备受关注,其有望在轻质烃的高效分离方面发挥重要作用。本项研究中,我们以轻质烃的高效分离为导向,从柔性多孔金属有机框架的合理设计与构筑出发,研究了此类材料的构筑规律,初步建立了此类柔性材料动态结构的表征方法,探讨了柔性框架动态行为的机理,初步揭示了此类材料产生高效分离性能的本质。在此基础上,探索了此类材料实际应用的可能途径,为柔性多孔框架材料应用于实际轻质烃类的高效分离提供理论及试验数据支持。经过四年多的努力工作,本项目取得了一系列研究成果,已发表SCI收录论文25篇(其中Nat. Commun. 1篇,ACS Appl. Mater. Interfaces 1篇,Chem. Commun. 2篇,Chem. Eur. J. 1 篇),获中国授权发明专利7项,申请中国发明专利2项,申请美国发明专利1项。发表的Nat. Commun.文章(Nat. Commun. 2015, 6, 7328.),自2016年1月起,连续被评为ESI论文。发表在Chem. Eur. J.上的论文被评为VIP文章,并被选为前内封面介绍相关工作。截至2017年12月21日,发表的研究成果已被引用270余次,单篇最高被引91次。培养出站博后1人,博士毕业生5人,硕士毕业生3人,在读研究生6人。研究成果受到国内外同行的关注和好评,产生了良好影响,圆满完成了预期目标。
{{i.achievement_title}}
数据更新时间:2023-05-31
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
基于ESO的DGVSCMG双框架伺服系统不匹配 扰动抑制
基于二维材料的自旋-轨道矩研究进展
高压工况对天然气滤芯性能影响的实验研究
二维MXene材料———Ti_3C_2T_x在钠离子电池中的研究进展
芳香烃/脂肪烃分离功能导向的金属-有机骨架材料微环境构筑与性能调控研究
新型柔性金属有机框架材料的构筑及其动态行为与性能调控
催化功能导向的金属有机框架材料设计与修饰
以水中偶联反应为导向的多孔有机离子框架材料的构筑