During last three decades, moduli space played very important role in the study of geometry and topology of manifolds, and has become a very popular topic in the study of geometric topology and mathematical physics. In this project, one will study birational symplectic geometry, Gromov-Witten invariant of Hilbert schemes of points on surfaces, orbifold Gromov-Witten invariant, Donaldson-Thomas invariant and quantum K-theory. We expect to prove that Hilbert schemes of points on some surfaces are numerically rationally connected;to obtain the change of Gromov-Witten invariant of Hilbert scheme of points on surfaces under Blow-up of surfaces; to prove the Blow-up correspondence for orbifold absolute/relative Gromov-Witten invariants and apply this correspondence to study the birational classification of orbifolds; to define quantum K-invariants and establish quantum K-theory and its geometric properties for general symplectic manifolds.
模空间在近三十年的几何拓扑研究中发挥了至关重要的作用,是当前几何拓扑及数学物理的研究热点问题之一。本项目计划开展关于双有理辛几何、曲面上点的Hilbert概形的Gromov-Witten不变量、orbifold Gromov-Witten不变量、Donaldson-Thomas不变量及量子K-理论的研究。预期证明若干曲面上点的HIlbert概形的数值双连通性;给出曲面上点的Hilbert概形的Gromov-Witten不变量在曲面Blow-up下的变化;给出orbifold Gromov-Witten不变量在Blow-up下的对应关系并用来研究orbifold的双有理分类;对辛流形定义量子K-不变量并建立起量子K-理论及其性质。
模空间在近三十年的几何拓扑研究中发挥了至关重要的作用,是当前几何拓扑及数学物理的研究热点问题之一。本项目主要研究了曲面上点的Hilbert 概形的Gromov-Witten 不变量、orbifold Gromov-Witten 不变量、Donaldson-Thomas 不变量及6维辛流形的Gromov-Witten 不变量的Blowup公式。 给出了若干曲面上点的HIlbert 概形的 Gromov-Witten不变量的计算; 给出orbifold Gromov-Witten 不变量沿光滑点的Blow-up公式;得到了6维辛流形的高亏格Gromov-Witten不变量的Blowup公式; 证明了Weinstein 猜测对某些乘积辛流形成立;给出了Welschinger不变量的Blowup公式;给出了轨形绝对/相对Gromov-Witten不变量的Blow-up对应。
{{i.achievement_title}}
数据更新时间:2023-05-31
Protective effect of Schisandra chinensis lignans on hypoxia-induced PC12 cells and signal transduction
基于ESO的DGVSCMG双框架伺服系统不匹配 扰动抑制
五轴联动机床几何误差一次装卡测量方法
双吸离心泵压力脉动特性数值模拟及试验研究
Himawari-8/AHI红外光谱资料降水信号识别与反演初步应用研究
模空间的几何性质及应用
黎曼面模空间的几何拓扑
Hilbert模的局部化,表示及相关几何分析
代数几何模空间高级研讨班