For transportation when moving or in nonlinear route transportation of bulk material,development of new mobile, flexible belt material conveying system,Research on a new type belt conveyor -"Flexible Mobile" belt conveyor system for , the system body consists of hinged to each other and equipped with a number of racks of a wheeled undercarriage system, the "T" type tape as conveying the material carrier. Contemplated by the bifurcation theory, center manifold theorem and chaos theory analysis system steering steady state evolved into a critical state bifurcation characteristics determine the variation; Based Lyapunov stable theory formed under conditions of non-steady steering system balance point and bifurcation theory, application of secondary law to build lateral stability dynamics model to determine the power system energy function and boundary conditions, it is estimated that the region of stable traveling, and verify its correctness by simulation and measured; Considering tire parameter perturbation and lateral interference impact, construct multi-input、multi-output LFT model, based on robust theory, design feedforward and feedback integrated controller and simulation to verify the feasibility and validity.This project aims to solve system mathematical description , control and other key technical of bulk material transportation system , developed a similar system to lay the theoretical foundation for the system of product transformation, so as to promote mobile transport machinery in the transport of bulk materialsdevelopments in the field, has important theoretical significance and unique engineering value.
针对散料非直线运输、行进中运输等工况,研制新型可移动、可弯曲多点驱动的"蛇行"带式输送系统,系统机身由相互铰接的若干独立机架组成,"T"型带作为输送物料的载体。项目采用理论分析、数值模拟、实验研究和综合分析相结合的研究方法,研究"蛇行"输送系统的侧向稳定性,分析侧移距、侧翻力矩、转弯半径、输送带张力及轮胎参数等因素对侧向稳定性的影响。基于自制的实验样机,实测侧向稳定性与各因素间的变化规律;通过分岔理论、中心流定理及混沌理论,建立系统侧向稳定性非线性数学模型,确定动力源能量函数及边界条件,分析系统转向时稳态演变成临界状态的分岔特性,分析系统在非稳定转向条件下的平衡点及分岔形成规律,并估计稳定行驶区域,基于鲁棒理论,设计前馈、反馈综合控制器,通过实测和仿真验证。项目旨在分析"蛇行"带式输送系统侧向失稳的数学描述与控制,提出系统参数优化方案,具有重要的理论意义和独特的工程应用价值。
带式输送机凭借其安全高效的连续输送优势在工业领域获广泛应用,而针对复杂环境比如:灾后重建,防洪抢险等场所的运输工具,目前常见的固定机架水平转弯输送机还很难满足上述环境的要求。所以研制一种能适应复杂环境,自主移动、多驱动转弯的“蛇行”带式输送机,以此为研究对象基于车辆参考坐标系和地面参考坐标系建立了系统非线性动力学模型,通过对系统转向过程中的非线性动力学模型进行了理论分析,分析了“蛇行”带式输送机的转向失稳机理,对不同条件下系统小车的动力学特性进行了仿真,验证了“蛇行”带式输送机转向失稳理论分析的正确性。构建了“蛇行”输送机行驶稳定域Lyapunov能量函数,结合“蛇行”带式输送系统结构的特点,以及系统机架小车侧滑、侧倾、输送带撒料等实际工况,找到了输送系统稳定平衡点和各状态参量平衡域范围。考虑系统模型不确定和存在外部扰动等情况,基于运动学方程设计了双层反馈控制系统,通过合理的上层控制算法控制移动机器人的轨迹跟踪误差在合理范围内,最后通过仿真分析和实验验证了模型及控制系统的合理性。
{{i.achievement_title}}
数据更新时间:2023-05-31
青藏高原狮泉河-拉果错-永珠-嘉黎蛇绿混杂岩带时空结构与构造演化
钢筋混凝土带翼缘剪力墙破坏机理研究
F_q上一类周期为2p~2的四元广义分圆序列的线性复杂度
平行图像:图像生成的一个新型理论框架
职场排斥视角下服务破坏动因及机制研究——基于酒店一线服务员工的实证研究
大型带式输送系统张力控制关键问题的研究
考虑悬架系统的铰接转向车辆多维减振及失稳控制研究
冷带轧机液压自动厚度控制系统失稳机理及智能控制策略研究
摇荡舰基作业的飞机牵引系统转向失稳特性与控制研究