The bearingless switched reluctance starter/generator integrates functions of the magnetic bearing, starter motor and generator, which is expected to increase the energy-conversion efficiency and system power density. Therefore, this project provides a novel solution to advance the performance of more-electric aircraft engines. Specifically, the single-winding Bearingless Switched Reluctance Machine (BSRM) is investigated thoroughly including mathematical models, control schemes, switching methods of operational modes, power converters and experimental platforms. The main contents are summarised as follows. Firstly, in order to facilitate the control of the levitation force and torque/generation, mathematical models and electromagnetic characteristics of BSRM are studied with the field-circuit method. Secondly, different control strategies in motoring and generating modes are developed to coordinately control the levitation force and the torque or generation. Based on the concept of the direct torque control method, the direct torque control and direct force control are proposed for the motoring mode, and the direct voltage control and direct force control are proposed for the generating mode. Therefore, it is expected that the performance of the bearingless switched reluctance starter/generator can be improved greatly. Moreover, the switching method from motoring to generating is explored deeply to obtain a smooth transition of the levitation-force control in different operational modes. Thirdly, the topologies of power converters and relevant control schemes are studied for the bearingless starter/generator to further improve the high-speed capability of BSRM and its superiority in the application of more-electric aircraft engines. Finally, the 5-DOF magnetic-levitation prototypes are established to explore and achieve the integration of functions for this kind of machines. In summary, the proposed work can enhance the innovation ability to research more-electric aircraft engines, and can achieve the great-leap-forward development of technology.
无轴承开关磁阻起动/发电机集起动机、发电机和磁悬浮轴承功能于一体,提高了电能转换效率和电机功率密度,为多电航空发动机性能的提升开辟了新的途径。本项目以无轴承开关磁阻电机(BSRM)为研究对象,对集成起动与发电功能于一体的单绕组BSRM技术进行深入系统的研究。具体内容包括研究BSRM数学模型和电磁特性,为转矩/发电与悬浮力的协调控制提供理论依据;基于“直接控制”思想,分别研究结合直接悬浮力控制的BSRM电动和发电运行控制方法,全面提升起动/发电机的运行性能;探索BSRM从电动到发电的模式切换方法,研究悬浮力控制平滑过渡的优化算法,获得电机在模式切换过程中的运行规律;研究适用于起动/发电模式的功能集成的功率变换器拓扑及其相应控制算法,以充分发挥其高速适应性;研制实验样机,探索和实现该电机的功能集成化。本项目研究对于增强我国航空多电发动机研究源头的创新能力,实现技术的跨越式发展具有重要意义。
无轴承开关磁阻起动/发电机集起动、发电与磁轴承技术于一体,结构简单,系统集成度高,提高了电机功率密度和电能转换效率,对多电航空发动机性能的提升提供了新的方向。本项目以BSRM为研究对象,对集起动、发电、悬浮功能于一体的BSRM进行系统、深入的研究。具体研究内容包括:研究BSRM的本体结构与电磁特性,为转矩/发电和悬浮力的协调控制奠定理论依据;基于“直接控制”理念,分别研究结合直接悬浮力控制BSRM电动和发电工作模式的控制策略,提升系统的运行性能;探索BSRM起动/发电两种工作模式的切换策略,研究悬浮力控制过程中的优化算法,获取电机在转矩与悬浮运行规律;研究适用于起动/发电多模式下的高集成化功率变换器拓扑以及所对应的控制策略,以提高其在高速运行过程中的适应性;研究实验样机,探索和实现该系统集成化应用。本项目的研究对于提高我国航空多电发动机的创新能力以及技术的发展有着重要意义。
{{i.achievement_title}}
数据更新时间:2023-05-31
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
基于多模态信息特征融合的犯罪预测算法研究
惯性约束聚变内爆中基于多块结构网格的高效辐射扩散并行算法
多空间交互协同过滤推荐
多源数据驱动CNN-GRU模型的公交客流量分类预测
航空发动机用12/10极自解耦式无轴承开关磁阻起动/发电机及其控制的基础研究
无轴承开关磁阻发电机的全周期发电机理的基础研究
无轴承开关磁阻电机容错运行控制的基础研究
新型无轴承开关磁阻电机及其控制研究