This project presents a theoretical analysis and experimental study on active vibration control of small unmanned aerial vehicles (UAVs) with sensors, actuators and harvesters made of piezoelectric materials. And it is set out to solve some key problems in simultaneous energy harvesting and vibration alleviating for multifunctional smart structures. The content of the project is introduced as follows. Firstly, inherent nonlinearities of piezoelectric materials are pronounced in their sensing, actuation and harvesting applications. In view of this, a unified nonlinear dynamic modeling method is proposed according to some obvious nonlinear characteristics including elastic nonlinear terms, hysteresis and coupling nonlinearities. It can provide necessary theoretical basis for the controller design of the multifunctional systems. Secondly, the number and location of the sensors, actuators and harvesters in multifunctional systems are studied. Its configuration rule is made up based on energy minimization, information acquisition and vibration reduction maximization. In order to realize the configuration rule, one modified Genetic Algorithm (GA), which are more efficient than traditional ones, is adopted to find out the optimal number and location of the sensors, actuators and harvesters. Based on the preceding results, an intelligent controller is designed subsequently by employing fuzzy control and optimization algorithm. The simulation results will be used to demonstrate that the vibration reduction and the energy consumption are both very satisfactory. Finally, electro-mechanical experiments are carried out about energy harvesting and vibration suppression for a multifunctional composite beam via piezoelectric elements. The tests are used to testify the validity and feasibility of the presented control theory in the project. This project can provide a brand-new technology about simultaneous energy harvesting and vibration alleviating for multifunctional structures or systems in aerospace applications.
本项目对小型无人驾驶飞行器翼梁集成智能压电传感器、作动器和俘能器的振动主动控制技术展开研究,旨在解决能量供给困难且需要精确振动抑制的结构系统若干关键性技术难题。首先,提出考虑材料非线性弹性、迟滞和机电耦合特性的压电复合结构动力学模型,该模型可适用于压电各功能元件及其结构特性的描述;然后,设计功能压电元件综合优化配置准则,并结合高效优化算法实现控制系统功能元件数目和位置配置最佳方案;基于以上成果,根据压电俘能器供能与控制系统耗能的平衡关系,设计可适用于压电复合结构主动控制系统的低能耗鲁棒控制器;最后,建立黏贴压电传感器、作动器和俘能器悬臂梁振动控制系统试验平台,通过振动俘能性能试验和振动主动控制试验验证所提理论的正确性。项目的完成,将建立起一套压电复合结构振动俘能与主动控制同步实现的理论和技术,为开发自传感、自供能、自控制现代化智能控制系统提供重要基础。
本项目对小型无人驾驶飞行器翼梁集成智能压电传感器、作动器和俘能器的振动主动控制技术展开研究,旨在解决能量供给困难且需要精确振动抑制的结构系统若干关键性技术难题。首先,提出考虑材料非线性弹性、迟滞和机电耦合特性的压电复合结构动力学模型,该模型适用于压电各功能元件及其结构特性的描述;然后,设计功能压电元件综合优化配置准则,并结合高效优化算法实现控制系统功能元件数目和位置配置最佳方案;基于以上成果,根据压电俘能器供能与控制系统耗能的平衡关系,设计可适用于压电复合结构主动控制系统的低能耗鲁棒控制器;最后,建立悬臂梁压电智能振动控制系统试验平台,通过振动俘能性能试验和振动主动控制试验验证所提理论的正确性。项目的完成,将建立起一套压电复合结构振动俘能与主动控制同步实现的理论和技术,为开发自传感、自供能、自控制现代化智能控制系统提供重要基础。
{{i.achievement_title}}
数据更新时间:2023-05-31
演化经济地理学视角下的产业结构演替与分叉研究评述
路基土水分传感器室内标定方法与影响因素分析
粗颗粒土的静止土压力系数非线性分析与计算方法
端壁抽吸控制下攻角对压气机叶栅叶尖 泄漏流动的影响
基于ESO的DGVSCMG双框架伺服系统不匹配 扰动抑制
非线性压电智能复合结构振动主动控制的理论与试验研究
基于压电纤维复合材料的航天柔性结构半主动振动控制研究
面向低速水流的复合流激振动压电俘能机理与方法研究
基于振动控制与能量收集双重功能的半主动TMD理论与试验研究