As an important research direction in the field of control, the state-feedback control and output-feedback control for stochastic nonlinear systems with uncertainties, the discrete or distributed control for large-scale stochastic systems and various control problems for Markovian switching systems have received a series of research achievements. However, there are still many unsolved problems. This project.will investigate several control problems for stochastic nonlinear systems with uncertainties, including: for more general stochastic nonlinear systems with time-delays, unknown control directions and Markovian switching, we give the controller design and analysis and provide technical support for practical systems. The main research contents include:.Problem 1: We will investigate the controller design and analysis for stochastic nonlinear systems with uncertainties..Problem 2: We will consider the control problems for high-order stochastic nonlinear systems with uncertainties..Problem 3: The control problems for stochastic nonlinear systems with Markovian switching..Problem 4: We will investigate some significant problems in controller design and analysis for stochastic nonlinear systems..These are the basic theory problems of stochastic nonlinear system control, with strong application background and difficult, so are worth further researching.
作为控制领域的重要热点研究方向,具有不确定项的随机非线性系统的状态反馈控制、输出反馈控制、大规模随机系统的离散化或分布式控制以及随机 Markovian切换系统的各种控制问题取得了一系列的研究成果,但仍有很多尚未解决的问题。本项目将研究具有不确定项的随机非线性系统的若干控制问题,包括:对含有时滞、未知控制方向、Markovian切换的更一般的随机非线性系统,给出控制器的设计和分析,并为实际系统提供技术支持。主要研究内容包括:.问题一:研究具有不确定项的随机非线性系统控制器的设计与分析。.问题二:研究具有不确定项的高阶随机非线性系统控制问题。.问题三:具有Markovian切换的随机非线性系统的控制问题。.问题四:研究随机非线性系统设计与稳定性分析的一些重要问题。.这些问题是随机非线性系统控制的基础理论问题,具有很强的应用背景,研究难度大,值得深入研究。
系统不确定项的存在例如不可测状态、未知时滞、未知控制系数、外部扰动等给随机非线性控制领域的研究带来巨大的困难,从而引起越来越多学者的关注。项目组成员围绕几类具有不确定项随机非线性系统的控制问题,开展了广泛深入的研究,并得到较好的研究成果。该项目已顺利完成预期的目标。应用径向基函数神经网络来处理不确定非线性项,并进一步推广到随机非线性系统。利用Lyapunov-Razumikhin 方法和Lyapunov-Krasovskii泛函处理时滞。而对随机非线性时滞系统,扰动广泛存在,利用Lyapunov-Krasovskii和动态面控制方法,设计NN自适应控制方案来保证系统得到期望的性能。对高阶随机非线性系统,进一步放宽非线性项和移除高阶次的限制,结合齐次占优和符号函数方法解决输出跟踪和输出反馈控制问题。Numbaum增益方法有效处理未知控制系数,利用变量变换技术有效处理时滞控制输入。有限时间稳定具有收敛速度快、鲁棒性强和抗干扰能力强等特点。课题组成员研究含不匹配扰动和高阶的不确定非线性系统,研究其有限时间输出调节问题。课题组成员还研究了更一般的随机非线性系统设计与稳定性分析的一些重要问题,并且利用这些方法解决一些实际问题。
{{i.achievement_title}}
数据更新时间:2023-05-31
EBPR工艺运行效果的主要影响因素及研究现状
多能耦合三相不平衡主动配电网与输电网交互随机模糊潮流方法
复杂系统科学研究进展
基于被动变阻尼装置高层结构风振控制效果对比分析
带有滑动摩擦摆支座的500 kV变压器地震响应
几类随机时滞非线性系统的稳定性分析与控制器设计
几类具有复杂不确定性的随机非线性系统的自抗扰控制与性能分析
随机非线性切换系统的智能优化控制器设计及性能分析
几类具有饱和非线性控制系统的分析与综合