The yaw moment and active steering integrated control combines their advantages and can guarantee the performance of vehicles in a large scale, which is a hot research direction of the vehicle control for the steering system. Different from the previous researches, this project provides some new ideas to solve problems of vehicle steering control while inherent coupling among vehicle subsystems and the elliptical constraint of friction forces are considered to improve the stability, ride comfort and handling ability. And the main research contents are as follows: the integrated control is stuied for the longitudinal and lateral subsystems on the basis of considering their inherent coupling, and the steering control problem of the varying-velocity vehicles is solved by robust control methods. Furthermore, as it brings great benefits to the safeties and the handling ability while the side-slip angle reaches a given suitable limitation, the active control problem of the side-slip angle dynamics is studied, and robust decoupling control strategy is proposed as a main way to solve the problem. Finally, as the direct yaw moment control just only work in the non-linear region of the tire forces and there is conflict among the driving input, active steering control and direct yaw moment control, the intelligent control problem based on driving behavior is proposed to achieve the goal that the active steering control and the direct yaw moment control are stabilized and autonomously switched, and their advantages are both inherited.
横摆力矩与主动转向集成控制综合了各自的优点,能在很大范围内保证车辆性能,是车辆转向控制研究的热点方向。不同于以往研究,本项目从车辆子系统间的固有耦合以及摩擦力椭圆约束出发,给出了解决当前车辆转向控制面临问题的新思路,以期改善车辆的稳定性、操纵性和乘坐舒适性。主要研究内容有:在深入考虑纵横向系统固有耦合的基础上,研究纵横向系统的集成控制,解决变速车辆系统的鲁棒转向控制问题。考虑到侧滑角满足适当的限制条件会大大提升车辆的安全性能和操纵性能,研究侧滑角动态主动控制问题,提出构建鲁棒解耦控制策略的方法解决该问题。最后,考虑到横摆力矩控制只在轮胎力进入非线性区域时发挥作用,并且和驾驶输入以及主动转向控制之间存在冲突,提出基于驾驶行为的智能控制问题,以实现主动转向控制与横摆力矩控制平顺稳定地自主切换,并发挥它们各自的优点。
横摆力矩与主动转向集成控制综合了各自的优点,能在很大范围内保证车辆性能,是车辆转向控制研究的热点方向。不同于以往研究,本项目从车辆子系统间的固有耦合以及摩擦力椭圆约束出发,给出了解决当前车辆转向控制面临问题的新思路,以期改善车辆的稳定性、操纵性和乘坐舒适性。主要研究内容有:在深入考虑纵横向系统固有耦合的基础上,研究纵横向系统的集成控制,解决变速车辆系统的鲁棒转向控制问题。考虑到侧滑角满足适当的限制条件会大大提升车辆的安全性能和操纵性能,研究侧滑角动态主动控制问题,提出构建鲁棒解耦控制策略的方法解决该问题。最后,考虑到横摆力矩控制只在轮胎力进入非线性区域时发挥作用,并且和驾驶输入以及主动转向控制之间存在冲突,提出基于驾驶行为的智能控制问题,以实现主动转向控制与横摆力矩控制平顺稳定地自主切换,并发挥它们各自的优点。项目执行期间围绕上述问题进行研究,发表论文5篇,设计硬件平台两套,为后续研究奠定了理论和实验基础。
{{i.achievement_title}}
数据更新时间:2023-05-31
端壁抽吸控制下攻角对压气机叶栅叶尖 泄漏流动的影响
基于ESO的DGVSCMG双框架伺服系统不匹配 扰动抑制
多源数据驱动CNN-GRU模型的公交客流量分类预测
异质环境中西尼罗河病毒稳态问题解的存在唯一性
基于结构滤波器的伺服系统谐振抑制
车辆转向系统和互联悬架集成控制策略及智能优化方法研究
变速运动车辆的鲁棒H∞控制
融合线控转向功能的汽车鲁棒滑模转向及横摆稳定性控制研究
融合转向制动功能的车辆集成线控系统关键技术研究