几类矩阵广义正交约束优化问题的算法、理论及应用

基本信息
批准号:11701227
项目类别:青年科学基金项目
资助金额:21.00
负责人:朱红
学科分类:
依托单位:江苏大学
批准年份:2017
结题年份:2020
起止时间:2018-01-01 - 2020-12-31
项目状态: 已结题
项目参与者:陈悦,崔晨红,韩涉
关键词:
非凸规划最优性条件梯度流算法增广拉格朗日法离散近似算法
结项摘要

In recent applications from data analysis in data mining and machine learning, several very important problems concerning optimization problems on Stiefel manifold (or the generalized orthogonality constraints set) arise. This project is to study the theory and numerical methods for generalized orthogonality constrained optimization problems and their applications. Based on our previous work along this line, this project aims at 1) establishing relevant and useful results; 2) developing highly efficient and fast algorithms for problems with different structures and different scales. In particular, we will primarily employ the generalized gradient flow method and the corresponding approximate discrete iterative scheme, design the alternating variables method and the symmetric generalized gradient descent method for different expressions of the generalized orthogonality constraints set, study the global convergence result for the hybrid approximated augmented Lagrangian method and the first-order spitting method, propose the accelerated proximal alternating linearized minimization method; and 3) writing Matlab softwares to solve optimization problems according to problem structure and scale, and applying the results into the data analysis fields, such as data mining and machine learning.

矩阵广义正交约束优化问题在数据挖掘、机器学习等数据分析领域有着广泛的应用。本项目以几类矩阵广义正交约束优化问题的理论、算法及应用为研究对象,基于申请人前期关于Stiefel流形上的优化理论与算法的工作,致力于研究这类问题的理论性质,建立适合不同问题结构和规模的高效算法。着重利用广义梯度流构造一阶离散近似算法,针对广义正交约束集的不同表示,设计交替变量法和对称广义梯度下降法。研究近似增广拉格朗日算法框架的全局收敛性,设计加速的邻近交替线性最小化算法。开展数值试验与模拟,在此基础上研制满足不同问题结构和不同规模要求的Matlab软件包。并将结果用于数据挖掘、机器学习等数据分析领域。

项目摘要

本项目致力于研究矩阵(广义)正交约束优化问题的理论及算法,并探索其在大数据分析领域的应用。本项目分别就广义正交约束集上的光滑目标函数及非光滑目标函数展开研究。针对具体问题的结构特征,对于目标函数可微的问题,在流形切空间给出广义内积的定义,基于该定义构造广义梯度; 利用广义梯度构造广义梯度流,并分析其离散迭代近似算法;相关成果发表在Journal of the Franklin Institute. 对于目标函数不可微的问题,分析近似增广Lagrangain算法框架的全局收敛性; 并设计求解近似增广Lagrangian算法子问题的有效加速算法;相关成果发表在Neural Computation. 对于混合高斯脉冲噪声去噪问题,我们构造正交约束下的去噪模型,相关成果发表在 IEEE Transactions on Image Processing.

项目成果
{{index+1}}

{{i.achievement_title}}

{{i.achievement_title}}

DOI:{{i.doi}}
发表时间:{{i.publish_year}}

暂无此项成果

数据更新时间:2023-05-31

其他相关文献

1

氟化铵对CoMoS /ZrO_2催化4-甲基酚加氢脱氧性能的影响

氟化铵对CoMoS /ZrO_2催化4-甲基酚加氢脱氧性能的影响

DOI:10.16606/j.cnki.issn0253-4320.2022.10.026
发表时间:2022
2

1例脊肌萎缩症伴脊柱侧凸患儿后路脊柱矫形术的麻醉护理配合

1例脊肌萎缩症伴脊柱侧凸患儿后路脊柱矫形术的麻醉护理配合

DOI:10.3870/j.issn.1001-4152.2021.10.047
发表时间:2021
3

低轨卫星通信信道分配策略

低轨卫星通信信道分配策略

DOI:10.12068/j.issn.1005-3026.2019.06.009
发表时间:2019
4

针灸治疗胃食管反流病的研究进展

针灸治疗胃食管反流病的研究进展

DOI:
发表时间:2022
5

端壁抽吸控制下攻角对压气机叶栅叶尖 泄漏流动的影响

端壁抽吸控制下攻角对压气机叶栅叶尖 泄漏流动的影响

DOI:
发表时间:2020

朱红的其他基金

批准号:21176022
批准年份:2011
资助金额:70.00
项目类别:面上项目
批准号:20876013
批准年份:2008
资助金额:37.00
项目类别:面上项目
批准号:69982008
批准年份:1999
资助金额:16.00
项目类别:专项基金项目
批准号:60572151
批准年份:2005
资助金额:25.00
项目类别:面上项目
批准号:50674006
批准年份:2006
资助金额:34.00
项目类别:面上项目
批准号:81602922
批准年份:2016
资助金额:18.00
项目类别:青年科学基金项目
批准号:50174054
批准年份:2001
资助金额:19.00
项目类别:面上项目
批准号:81372428
批准年份:2013
资助金额:65.00
项目类别:面上项目
批准号:21776014
批准年份:2017
资助金额:70.00
项目类别:面上项目
批准号:21376022
批准年份:2013
资助金额:90.00
项目类别:面上项目

相似国自然基金

1

几类矩阵优化问题的算法设计及其理论和应用

批准号:11101409
批准年份:2011
负责人:刘歆
学科分类:A0405
资助金额:22.00
项目类别:青年科学基金项目
2

几类典型稀疏优化问题的算法、理论及应用

批准号:11471101
批准年份:2014
负责人:肖运海
学科分类:A0405
资助金额:56.00
项目类别:面上项目
3

正交约束优化问题的非光滑算法

批准号:11371102
批准年份:2013
负责人:杨卫红
学科分类:A0405
资助金额:50.00
项目类别:面上项目
4

正交约束优化问题及其应用

批准号:11101274
批准年份:2011
负责人:文再文
学科分类:A0405
资助金额:22.00
项目类别:青年科学基金项目