Low temperature freezing disaster is a serious challenge for the fields of power transmission and communication, controllable preparation of self-cleaning anti-icing coating materials show important scientific significance and application value. In this project, engineering self-cleaning polymer coatings with ordered polymer nanofibers and low surface energy applied to the the low temperatures freezing rain environment will be controllable-constructed by conventional coating-curing process; a simple reasonable dynamic online monitoring system/method under freezing rain (synergy of simulated multi-factor freezing rain environmen, dynamic tracking of icing behavior and ice adhesion monitoring) will be established; the wetting, adsorption and freezing behaviors of water in different phase states on the self-cleaning surfaces under multi-factor low-temperature environment will be studied; the relationship between the composition, microstructure and wettability of superhydrophobic surfaces and the crystallization delay and promotion of melting and desorption of water in different phase states on these surfaces will be explored; a theoretical model of “ice removal by hole cushion” about the synergy influence of polymer micro-nano texture and "air cushion" of mocrovoids on the interface behaviors such as ice nucleation/growth, ice adhesion/removal on the self-cleaning surfaces will be established; the mechanism of condensation inhibitation and icing delay of freezing rain droplets on the self-cleaning coatings and the essence of adhesion/desorption of ice crystals will be revealed. The results will provide a theoretical basis and technical support for enhancing the technical level of anti-ice/snow disaster in the fields of the power transmission and communication.
低温冰冻灾害是电力传输、通信等领域面临严峻挑战之一,可控制备工程实用性自清洁防结冰涂层材料具有重要科学意义和应用价值。本项目采用一步成膜法,可控构筑应用于低温冻雨环境下的低表面能有序聚合物纳米纤维超疏水工程性自清洁涂层;建立简便、合理的冻雨结冰动态在线监测系统/试验方法(“多因素冻雨环境”、“结冰行为动态跟踪”及“覆冰粘附力监测”协同),深入研究多因素低温环境下,各相态水于自清洁表面润湿、吸附、结冰及融脱冰行为;探讨超疏水表面组成、微结构、润湿性与水于其表面推迟结晶及促进冰晶消融/脱附间的关系规律;建立表面有序聚合物纳米纤维织构及微孔洞“空穴气体”协同作用对工程表面冰晶形核/生长、粘附/脱附等界面行为影响规律的“空穴气垫脱冰”理论模型;揭示自清洁涂层推迟/抑制冻雨结冰作用机理及冰晶粘着/脱附本质。研究结果将为提升我国在电力传输及通信领域抗低温冰冻灾害等方面技术水平提供理论基础和技术支持。
各项研究工作均按照项目计划书要求进行,圆满完成计划书设定的目标。利用“液晶模版机理”与“微相分离”协同作用,匹配传统涂层固化工艺,于金属、玻璃等多种基材简便构筑出具有微-纳米双重织构的PTFE/PPS超疏水涂层材料(接触角:163-170°,滚动角:0-4°); 创新发展了“气氛-宏观外力”及“淬火-微观内力” 协同干扰结晶构筑氟聚合物纳米纤维、纳米球/纳米丘疹(直径:60-200nm)的新原理;为研究超疏水防结冰机理/工程示范奠定了材料基础。通过“油滴真空表界面行为”试验,首次证明了MNBS织构超疏水表面中“空穴气体/气泡”的存在形式/状态,以及“气垫作用”对超疏水涂层表界面行为的作用形式和机理。将“多因素冰冻环境”、“结融冰实时监测”与“冰晶脱附”协同匹配,创新性地建立了多因素低温结冰在线监测测试方法;深入研究多因素低温环境下(0~-4℃、40%-90%RH),湿度、低温、水介质、表面疏水性、孔洞空穴气体及纳米结构对超疏水涂层结冰延迟及促进冰晶消融/脱附的影响规律。结果表明:超疏水涂层比疏水涂层、亲水基材更有利于抑制/推迟固着水珠于其表面结冰/结晶(延迟10-40min)。创新性地提出了“空穴气体紊流抑制结冰”的理论模型,从静态和动态协同阐释了空穴气体对结冰延迟的内在干扰机制,为设计应用于自然冰冻环境的防结冰材料提供了新视角。初步工程防结冰应用示范呈现60%以上的“防结冰”功效,验证了实验室防结冰理论的吻合性。本项目顺利实施为我国在低温冻雨电力传输、通信及气象站等相关设施的防结冰性能提升/抗冰冻灾害,奠定了必要的理论基础和技术支持。项目执行期间共发表学术论文4篇,其中SCI论文2篇(IF>8、1篇,IF>3、1篇),EI论文1篇,申请专利2件,已培养毕业博士研究生1名、硕士研究生1名;参加国内学术会议20余人次、作学术报告9人次。
{{i.achievement_title}}
数据更新时间:2023-05-31
农超对接模式中利益分配问题研究
栓接U肋钢箱梁考虑对接偏差的疲劳性能及改进方法研究
敏感性水利工程社会稳定风险演化SD模型
动物响应亚磁场的生化和分子机制
人工智能技术在矿工不安全行为识别中的融合应用
仿生微纳结构的物理杀菌机理和自清洁长效性机制研究
低温下超疏水、低黏附高分子防结冰材料的构筑和表征
表面特性与飞机结冰相关性研究
用于风机叶片高湿低温环境下防覆冰除尘的材料制备及除冰机制研究