It is difficult to selectively adsorb and degrade microcystins from coexisting nontoxic or low-toxic compounds in water. It is of urgent importance to design and build highly selective adsorption-catalysis systems with specific interaction and recognization towards microcystins. During the pre-research of this project, we found that InVO4 nano-particles exhibited a unique adsorption behavior and had a high absorption capacity for Microcystin-LR (MC-LR), which provides a new opportunity for the selective removal of MC-LR. Taking these observations as a starting point, this project will first study the microcosmic mechanism of the specific interaction between InVO4 and MC-LR, and then novel selective adsorption materials, which can avoid the competitive adsorption of coexisted other organic compounds, will be developed. Systems for the selective adsorption and in-situ photocatalytic degradation of MC-LR from water will be built. An emphasis will be given for the molecular-level understanding of the electron-transfer, radical reaction and product distribution during the degradation by using in-situ Infrared spectroscopy and isotope labeling technique, to explain the synergistic mechanism between the adsorption and photocatalytic degradation. New photocatalytic systems based on the concept of selective trapping and in-situ degradation will be developed for the highly selective and efficient treatment of MC-LR in water.
针对在水中其它化合物共存条件下难以将藻毒素选择性吸附或降解这一科学难题,构筑对藻毒素具有特异相互作用和识别效应的新型高选择性吸附-催化体系有着重要意义。前期预研发现InVO4纳米颗粒对微囊藻毒素(Microcystin-LR,MC-LR)具有独特的吸附行为和超高吸附容量,为选择性识别MC-LR体系的发展提供了新的契机。本项目将以此发现为起点,首先深入研究InVO4与MC-LR的特异相互作用及选择性吸附机制,进而开发其它能避开水体中共存有机物选择性识别MC-LR的新型吸附材料,并在此基础上构筑对水中MC-LR选择性吸附-原位降解的光催化体系。重点采用原位红外技术和同位素示踪技术在分子水平上理解吸附-原位光催化的电子转移、自由基反应、产物分布等基本过程,揭示吸附和光催化协同机理,发展基于选择性捕获再原位降解理念的可高效高选择性清除水中藻毒素的新型光催化体系。
针对在水中其它化合物共存条件下难以将藻毒素选择性吸附或降解这一科学难题,构筑对藻毒素具有特异相互作用和识别效应的新型高选择性吸附-催化体系有着重要意义。本项目采用水热法和沉淀法等制备钒酸盐等复合氧化物材料,分析其晶型和组成,优化材料合成条件和吸附条件,筛选出具有快速高容量吸附材料,成功构筑和优化了VO43-四面体型金属复合氧化物、Bi系复合氧化物材料金属有机复合物(MOF)、天然铁矿物(NIF)等多类材料的制备条件,建立了对微囊藻毒素(Microcystin-LR,MC-LR)具有特异相互作用和识别效应的高选择性吸附-催化体系。重点采用原位红外技术和同位素示踪技术在分子水平上理解吸附-原位光催化的电子转移、自由基反应、产物分布等基本过程,揭示了MC-LR选择性降解机理,主要包括MOF等催化剂界面电荷静电吸附机理,V介导的氧自由基协同催化和NIF界面Lewis酸催化与Bronsted碱催化等协同机理,建立的基于选择性原位降解机理,为高效高选择性清除水中藻毒素的新型光催化体系提供了一定的参考。
{{i.achievement_title}}
数据更新时间:2023-05-31
监管的非对称性、盈余管理模式选择与证监会执法效率?
钢筋混凝土带翼缘剪力墙破坏机理研究
当归补血汤促进异体移植的肌卫星细胞存活
基于图卷积网络的归纳式微博谣言检测新方法
新疆软紫草提取物对HepG2细胞凋亡的影响及其抗小鼠原位肝癌的作用
微囊藻毒素的光催化降解技术和机理研究
溶藻细菌对铜绿微囊藻的溶藻机理及对微囊藻毒素的降解研究
自然光照下微囊藻毒素降解机理研究
微囊藻毒素和柱孢藻毒素的辐照降解机理与毒理效应研究