Hermitian对称空间中子流形的平均曲率流

基本信息
批准号:11526040
项目类别:数学天元基金项目
资助金额:3.00
负责人:肖邦
学科分类:
依托单位:重庆理工大学
批准年份:2015
结题年份:2016
起止时间:2016-01-01 - 2016-12-31
项目状态: 已结题
项目参与者:
关键词:
平均曲率流kahlerEinstein流形Hermitian对称空间
结项摘要

This project aims to apply mean curvature flow to study the properties of Hermitian symmetric spaces and the submanifolds in them . Suppose that the second fundamental form of the submanifold satisfies a pinching condition, we expect that it is invariant under the mean curvature flow. We give an effiective estimation of the reaction terms in the evolution equations, then we analyze the existence and convergence of the solution. Thus we obtain the topology of the submanifolds. This is a generalization of the work of G. Pipoli and C. Sinestrari about the closed submanifods in complex projective spaces. Moreover we will apply mean curvature flow to study the deformations of symplectomorphisms of all kinds of irreducible Hermitian symmetric spaces of compact type and their submanifolds. We will use the method of bounded complex symmetric domains to deal with the types of U(n + m)/U(n) × U(m), n, m ≥ 1, SO(n + 2)/SO(n) × SO(2), n ≥ 3. This is a supplement of the work of Guangcun Lu and Bang Xiao on this area.

本课题旨在应用平均曲率流来研究Hermitian对称空间及其子流形的相关性质。假设此子流形的第二基本形式满足适当的pinching条件,比如说它的模长可以用平均曲率的模长来界定。我们期望这个pinching条件在曲率流发展的过程中得以保持。通过有效地估计第二基本形式的发展方程中的reaction项,分析解的存在性,收敛性,从而得到子流形的拓扑性质。这将是G. Pipoli 与C. Sinestrari关于复射影空间中闭子流形的相应工作的推广。另外,我们还将应用平均曲率流研究所有紧致型不可约的Hermitian对称空间及其子流形的辛微分同胚的形变,尤其是用有界对称域的方法统一处理U(n + m)/U(n) × U(m), n, m ≥ 1, SO(n + 2)/SO(n) × SO(2), n ≥ 3的情形。 这是 Guangcun Lu 与 Bang Xiao 在这方面工作的补充。

项目摘要

项目成果
{{index+1}}

{{i.achievement_title}}

{{i.achievement_title}}

DOI:{{i.doi}}
发表时间:{{i.publish_year}}

暂无此项成果

数据更新时间:2023-05-31

其他相关文献

1

一种基于多层设计空间缩减策略的近似高维优化方法

一种基于多层设计空间缩减策略的近似高维优化方法

DOI:10.1051/jnwpu/20213920292
发表时间:2021
2

基于多色集合理论的医院异常工作流处理建模

基于多色集合理论的医院异常工作流处理建模

DOI:
发表时间:2020
3

基于改进LinkNet的寒旱区遥感图像河流识别方法

基于改进LinkNet的寒旱区遥感图像河流识别方法

DOI:10.6041/j.issn.1000-1298.2022.07.022
发表时间:2022
4

基于主体视角的历史街区地方感差异研究———以北京南锣鼓巷为例

基于主体视角的历史街区地方感差异研究———以北京南锣鼓巷为例

DOI:
发表时间:2019
5

贵州织金洞洞穴CO2的来源及其空间分布特征

贵州织金洞洞穴CO2的来源及其空间分布特征

DOI:
发表时间:2016

肖邦的其他基金

相似国自然基金

1

双曲平均曲率流

批准号:11271323
批准年份:2012
负责人:孔德兴
学科分类:A0305
资助金额:68.00
项目类别:面上项目
2

平均曲率流相关问题研究

批准号:11271072
批准年份:2012
负责人:忻元龙
学科分类:A0108
资助金额:60.00
项目类别:面上项目
3

紧Hermitian流形上复Monge-Ampère型⽅程及曲率研究

批准号:11801516
批准年份:2018
负责人:聂小兰
学科分类:A0107
资助金额:25.00
项目类别:青年科学基金项目
4

子流形与曲率流

批准号:11531012
批准年份:2015
负责人:许洪伟
学科分类:A0108
资助金额:230.00
项目类别:重点项目