Combinatorial design is an important branch of Combinatorics. The theory and method of combinatorial design have been used in many subjects and fields. The large set of combinatorial design becomes the difficult and widely used aspect in the theory of combinatorial design because of its complex conditions.The problem about large set developed very slowly in many years owing to its difficulty. Our country always keeps the international leading position because most of the newest results are obtained by the domestic scholars. The problems will be investigated in the task are the hot and frontal issues in the reseach of the large set. Solving these problems will not only has important value in theory and application,but also can maintain the international leading position of our country in the reseach of large set. We will do some research work on large sets of graph designs and the related graph designs, packing designs and covering designs, mainly investigate large sets of star K_{1,k} and path P_k. For any value k, we plan to find out the new methods in order to extend the result. For some smaller values k, we aim at obtaining the existence of some infinite classes, extending the known results in order to make the result perfect as far as possible.
组合设计是组合数学的一个重要分支,其理论和方法已渗透到许多学科和领域。组合设计的大集问题条件复杂,因此成为组合设计理论中难度很大而又有较强应用价值的方向,鉴于它的难度,长期以来进展很缓慢。我国在大集的研究方面一直处于国际领先地位,表现在大部分的最新结果均是由国内学者得到的。本课题拟研究的问题是这方面研究的热点问题和前沿问题,这些问题的解决不仅在理论和应用上有重要价值,而且将继续保持我国在这方面研究的国际领先地位。本项目将对图设计的大集及相关的图设计、图填充和图覆盖进行研究,着重研究星图K_{1,k},链图P_k的图设计大集。拟给出解决一般k值情形的新方法,努力推进,扩大其存在结果;对较小的k值,拟给出一些无穷类的存在性,进一步拓展它们的存在范围,争取使其结果趋于完善。
组合设计大集问题是组合设计理论中难度大而又有较强应用价值的一个研究方向。鉴于有些大集的结果已被应用于编码和密码中,国内外专家学者对有关大集问题的研究越来越重视。近年来,图设计及其大集问题成为研究的热点问题。本项目主要对图设计的大集及相关的图设计、图填充和图覆盖问题进行研究,图设计大集方面,主要研究一些较简单图的大集问题,着重研究星图和链图的大集,图设计方面,研究四个八点八边图和七个九点九边图的图设计、图填充和图覆盖问题。通过对本项目的研究,给出了解决大集问题的新方法,对图设计及其大集的研究进行了有力的推进,扩大了一些较简单图特别是星图K_{1,k}和链图P_k大集的存在性结果,进一步拓展了其存在范围;利用递归构造,得到了图设计(v,G,1)-GD的存在谱,其中G为四个八点八边图,还得到了七个九点九边图的图设计存在谱,并完全解决了其中四个图的图填充和图覆盖问题;此外还研究了相关的一些设计或大集问题并取得了一些存在性结果。已在SCI、EI检索期刊和其它重要期刊上发表或接收学术论文9篇,其中5篇为SCI或EI。这些成果扩大了图设计及其大集的存在性结果,进一步拓展了其存在范围,具有重要的理论意义和应用价值。
{{i.achievement_title}}
数据更新时间:2023-05-31
Protective effect of Schisandra chinensis lignans on hypoxia-induced PC12 cells and signal transduction
Intensive photocatalytic activity enhancement of Bi5O7I via coupling with band structure and content adjustable BiOBrxI1-x
农超对接模式中利益分配问题研究
硬件木马:关键问题研究进展及新动向
Asymmetric Synthesis of (S)-14-Methyl-1-octadecene, the Sex Pheromone of the Peach Leafminer Moth
图设计的大集问题
关于图的交叉数问题研究
关于图的集控制问题研究
关于图染色及相关问题研究