The microbial sensing technology was commonly used for detecting biodegradable organic compounds in wastewater, however, resulted a selective, low efficiency biodegradation due to the microbial species and quantities. The biofilm reactor consists of multi-species microorganisms with high unit density, which is an ideal biological recognition element in biodegrading organic compounds in wastewater. The biofilm reactor is also a key component in rapid biochemical oxygen demand (BOD) determination. This project will study the tubular biofilm reactor cultivation method systematically, and propose new BOD determination principles and methods. Innovatively, endogenous microbial species in wastewater were used as microbial seeds in cultivation the biofilm reactor, coupled with carbon based material modified tubes as substrate in fabricating the plug flow tubular biofilm reactor. In this project, the key biofilm formation conditions on the functionalized substrate will be obtained, as well as the three-dimensional, multi scale microcosmic characterization of the biofilm structure. The metabolic dynamic characteristics and cellular microcosmic conditions in multi periods will also been revealed. This project will obtain the key technologies in preparing biofilm reactor, and afford scientific foundations in the developing rapid BOD online methods with high stability and durability, and low maintenance and consumption.
利用微生物传感技术检测污水中可生物降解有机物含量的方法往往因微生物的种类及数量有限,导致有机物的选择性、低效降解。微生物膜反应器具有多菌群组成、高单位密度的物理特性,是理想的微生物降解污水有机物的生物识别元件,是快速生化需氧量(BOD)检测的核心构件。本项目将系统地研究管状微生物膜反应器的构建及表征方法,并提出BOD检测的新原理和新方法。创新性地以污水内源微生物为培养微生物膜反应器的微生物源,以碳基材料功能化的管路为基底,构建流通式微生物膜反应器。通过本项目的研究,要掌握内源微生物在功能化的反应器基底上成膜关键性条件,实现三维、多尺度下微生物膜结构的微观表征,揭示微生物膜的代谢动力学特性及不同时期下的细胞微观状态。本项目研究可获取微生物膜反应器制备的关键技术,并为发展高稳定、超耐用、少维护和低消耗的快速BOD在线监测方法提供科学依据。
利用微生物传感技术检测污水中可生物降解有机物含量的方法往往因微生物的数量有限导致有机物的选择性、低效降解,发展的微生物传感器方法普遍适应性差。本项目系统地研究管状微生物膜反应器的构建及表征方法,提出了基于光电降解有机物的BOD检测的新原理和新方法。创新性地以污水微生物为培养微生物膜反应器的微生物源,以多壁碳纳米管材料功能化的管路为基底,构建流通式微生物膜反应器。通过本项目的研究,掌握了微生物在功能化的反应器基底上成膜关键性条件,实现了多尺度下微生物膜结构的微观表征,揭示微生物膜的代谢动力学特性及不同时期下的细胞微观状态。研制的微生物膜反应器具有良好的环境适应性,与BOD5方法相比,生物降解效率可达22%,连续使用寿命超过一年以上。本项目还发展了在线监测仪并进行了现场应用研究,研究结果为发展高稳定、超耐用、少维护和低消耗的快速BOD在线监测方法提供科学依据。
{{i.achievement_title}}
数据更新时间:2023-05-31
桂林岩溶石山青冈群落植物功能性状的种间和种内变异研究
结核性胸膜炎分子及生化免疫学诊断研究进展
基于图卷积网络的归纳式微博谣言检测新方法
极地微藻对极端环境的适应机制研究进展
双粗糙表面磨削过程微凸体曲率半径的影响分析
基于微流控技术的生化需氧量电化学检测芯片研究
基于信息融合的化学需氧量绿色检测新方法
用于水质现场检测的微型热-紫外复合快速消解方法研究
生物膜法煤矿瓦斯治理微通道反应器内多相流动及传输特性