几类数学物理方程驻波解的存在性与动力学分析

基本信息
批准号:11571370
项目类别:面上项目
资助金额:45.00
负责人:唐先华
学科分类:
依托单位:中南大学
批准年份:2015
结题年份:2019
起止时间:2016-01-01 - 2019-12-31
项目状态: 已结题
项目参与者:肖莉,陈明,张健,廖芳芳,张文,秦栋栋,李广兵,陈思彤,高足
关键词:
驻波解“NehariPankov型”基态解集中性指数衰减性时滞
结项摘要

Schrödinger equations, Dirac equations and various related coupled Schodinger systems constitute the core of quantum mechanics, and have been widely employed in other fields such as atomic physics, molecular physics, split state physics, nuclear physics and chemistry. Many other problems in mathematics and physics are also closely related to these equations, including the Brezis-Nirenger problem, the Yamabe problem in geometry, the existence of minimum of the Yang-Mills functional, isoperimetric inequality,and the theory for the balance of gravity in galaxy. In this proposed research, based on the existing literature, we will use the method of variation together with the critical point theory to explore some key issues for these equations. Among these issues are the existence and multiplicity of standing waves, ground state solutions of Nehari-Pankov type and semi-classic solutions, as well as some dynamical properties of the standing waves such as intensity,decay property and regularity etc. These are very important yet very challenging mathematical problems, as such, we also expect to develop some novel and more effective techniques/methods which will enable us to obtain some essentially new results and significantly contribute to the theory of elliptic differential equations.

Schrödinger 方程、Dirac方程和Schrödinger 耦合系统构成了量子力学的核心基础,在原子物理、分子物理、固体物理、核物理、化学等领域中被广泛应用。许多数学物理问题,如 Brezis-Nirenberg 问题,几何中的 Yamabe 问题,Yang-Mills 泛函的非极小解的存在性,等周不等式,星系的重力平衡理论都与其密切相关。本项目将借助变分方法与临界点理论,在已有文献的基础上,重点研究非线性Schrödinger 方程、Dirac方程和Schrödinger 耦合系统的核心问题:驻波解、“Nehari-Pankov型”基态解和半经典解的存在性与多重性,驻波解的集中性、衰减性和正则性等动力学性态。发展和开拓非线性分析方法、技巧,深化数学工具,对所研究的问题获得若干全新的、本质性的结果,推进非线性椭圆方程定性理论的发展。

项目摘要

Schrödinger方程、Dirac方程和Schrödinger耦合系统构成了量子力学的核心基础,在原子物理、分子物理、固体物理、核物理、化学等领域中被广泛应用。许多数学物理问题,如Brezis-Nirenberg问题,几何中的Yamabe问题,Yang-Mills泛函的非极小解的存在性,等周不等式,星系的重力平衡理论都与其密切相关。本项目借助变分方法与临界点理论,在已有文献的基础上,建立了非线性Schrödinger 方程、Dirac方程和Schrödinger 耦合系统的驻波解、“Nehari-Pankov型”基态解和半经典解的存在性与多重性,系统地研究了驻波解的集中性、衰减性和正则性等动力学性态,获得了一系列较为深刻的重要成果,提出了新方法,发展了现有的非线性椭圆微分方程定性理论。

项目成果
{{index+1}}

{{i.achievement_title}}

{{i.achievement_title}}

DOI:{{i.doi}}
发表时间:{{i.publish_year}}

暂无此项成果

数据更新时间:2023-05-31

其他相关文献

1

针对弱边缘信息的左心室图像分割算法

针对弱边缘信息的左心室图像分割算法

DOI:10.3778/j.issn.1002-8331.1911-0012
发表时间:2020
2

具有随机多跳时变时延的多航天器协同编队姿态一致性

具有随机多跳时变时延的多航天器协同编队姿态一致性

DOI:10.7641/CTA.2018.70969
发表时间:2018
3

基于直觉模糊二元语义交互式群决策的技术创新项目选择

基于直觉模糊二元语义交互式群决策的技术创新项目选择

DOI:10.12005/orms.2019.0029
发表时间:2019
4

黑色素瘤缺乏因子2基因rs2276405和rs2793845单核苷酸多态性与1型糖尿病的关联研究

黑色素瘤缺乏因子2基因rs2276405和rs2793845单核苷酸多态性与1型糖尿病的关联研究

DOI:10.3760/cma.j.issn.1674-5809.2019.12.008
发表时间:2019
5

考虑台风时空演变的配电网移动储能优化配置与运行策略

考虑台风时空演变的配电网移动储能优化配置与运行策略

DOI:10.7500/aeps20210702006
发表时间:2022

唐先华的其他基金

批准号:11171351
批准年份:2011
资助金额:50.00
项目类别:面上项目
批准号:10471153
批准年份:2004
资助金额:21.00
项目类别:面上项目
批准号:10771215
批准年份:2007
资助金额:27.00
项目类别:面上项目

相似国自然基金

1

几类非典型薛定谔方程(组)驻波解的存在性与多重性研究

批准号:11271331
批准年份:2012
负责人:沈自飞
学科分类:A0206
资助金额:60.00
项目类别:面上项目
2

非局部椭圆方程驻波解的存在性与动力学研究

批准号:11901532
批准年份:2019
负责人:罗虎啸
学科分类:A0302
资助金额:24.00
项目类别:青年科学基金项目
3

几类拟线性薛定谔方程解的存在性与动力学分析

批准号:11901276
批准年份:2019
负责人:陈建华
学科分类:A0302
资助金额:26.00
项目类别:青年科学基金项目
4

几类非线性数学物理模型方程与抛物方程

批准号:10271034
批准年份:2002
负责人:刘亚成
学科分类:A0307
资助金额:9.00
项目类别:面上项目