In order to interpret the mechanical behavior of airport asphalt airport pavement and overcome the difficulties of response information acquisition, interaction mechanism and information sensing methodology between multiple running states aircraft and asphalt pavement from multi-level perspective are proposed herein. First, based on the multi-body dynamics and the downsized landing gear loading platform, the quantification methodology of dynamic characteristics for full-size aircraft and landing gear under multiple running states, considering pavement surface roughness simultaneously, is investigated. Second, the pressure distribution measurement technology and interaction numerical simulation between aerospace tire and asphalt pavement are utilized for establishing three-directional contact pressure digital model of aviation tire under multiple running states. Then, the ultrahigh aircraft tire pressure and viscoelastic characteristics of pavement are taken into account to discuss the full-field spatial and temporal distribution of dynamic responses as well as superposition effect of multiple wheel units by employing numerical simulation analysis. Finally, based on the distributed optical fiber sensing and data mining technology, the methodology of full-field dynamic response perception is developed, and the dynamic response and service performance prediction model of asphalt airport pavement under multiple running states is established. This research based on sequence decoupling approach attempts to quantify the interaction between multiple running states aircraft and airport asphalt airport pavement from multi-level perspective, which lays the theoretical foundation for airport pavement structure design, performance evaluation and security operation. Besides, the information sensing methodology of optical distributed measurement technology provides data support for the mechanical behavior interpretation of airport pavement. This proposed research plays a propelling role in the development of airport engineering and structural health monitoring.
针对机场沥青道面力学行为分析及信息获取中关键科学问题,拟从不同层次研究多运行状态飞机-沥青道面交互作用机制及信息感知方法。首先,基于多体动力学和缩尺寸起落架加载平台,建立考虑道面不平度的多运行状态飞机及起落架系统动力特性量化方法;其次,基于压力分布测量以及航空轮胎-沥青道面交互作用数值模拟,建立多运行状态下航空轮胎三向接地压力数字模型;再次,考虑飞机荷载超高胎压及道面材料粘弹特性,借助数值模拟分析揭示沥青道面全场动力响应时空分布规律及多轮组叠加效应;最后,基于分布式光纤传感及信息挖掘技术,建立沥青道面全场响应信息感知方法,构建飞机多运行状态下沥青道面动力响应及性能预测模型。本研究基于顺序解耦尝试量化多运行状态飞机-沥青道面交互作用机制,为机场道面结构设计、性能评估及安全运营奠定理论基础,而光纤分布式测试信息感知方法为道面力学行为研究提供数据支撑。研究对机场工程、结构监测发展具有推动作用。
机场沥青道面结构力学行为是恶劣服役环境、复杂荷载动力特性、材料自身特性等多种因素共同作用下的宏观体现。以往研究大多关注外界环境和沥青混合料的优化设计,在复杂飞机荷载方面多参考公路设计经验,将其简化为圆形均布静态荷载,并通过线性叠加的方式计算复杂起落架构型的飞机荷载,忽略了飞机运行状态、航空轮胎接地压力及道面不平整度等影响,导致机场沥青道面早期病害的频繁发生,严重影响机场的安全运营和维护。因此,开展多运行状态下飞机-机场沥青道面交互作用机制及信息感知方法研究,有助于揭示复杂飞机荷载作用下机场沥青道面力学行为特征,及时掌握和预估在役机场沥青道面的服役性能和养护时机,进而提高机场沥青道面的使用寿命和服役质量。.为准确量化多运行状态飞机-沥青道面交互作用机制,本研究借助理论推导、数值模拟、室内试验以及现场实测等研究手段,将研究问题顺序解耦为飞机荷载动力特性、机-道界面接触特性、道面响应分布特性以及光纤分布式信息感知等四部分内容,获取了多运行状态下飞机荷载的动力特性,由此提出了多轮组构型的航空轮胎静态和动态接地压力测量方法,并开展了移动荷载作用下机场沥青道面动力响应分布规律的模拟分析,为机场道面健康监测系统的布设和搭建奠定基础,实现了对机场沥青道面的外界环境、荷载信息、裂缝扩展、车辙演变等信息的实时监测和预估,有效提高了机场道面的耐久性和安全性。研究表明,多运行状态下飞机荷载具有明显差异性,且飞机俯仰角、重心位置及道面表面状况对荷载动力特性的影响最为显著,其中着陆冲击荷载最不利,飞机静载对道面影响最小,验证了飞机动载研究的必要性;在环境温度和非均布飞机动载的共同作用下,机场沥青道面结构具有明显的功能分区特征和响应叠加效应,推动机场道面设计向结构-材料-性能一体化设计方向发展;基于分布式光纤传感技术的信息感知和性能预估方法可以掌握机场道面的服役状态,有利于及时制定合理的养护和维修决策。
{{i.achievement_title}}
数据更新时间:2023-05-31
路基土水分传感器室内标定方法与影响因素分析
涡度相关技术及其在陆地生态系统通量研究中的应用
农超对接模式中利益分配问题研究
硬件木马:关键问题研究进展及新动向
基于 Kronecker 压缩感知的宽带 MIMO 雷达高分辨三维成像
新一代大型飞机转弯滑行时沥青道面剪切行为研究
面向飞机辅助动力装置在翼状态评估及预测的感知参数优化建模方法
基于脑血氧信息的运动状态识别及自适应助行轨迹规划方法研究
飞机动载下复合道面结构软土路基长期沉降研究